
 2013 Microchip Technology Inc. DS52106A

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

User’s Guide

DS52106A-page 2 2013 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash
and UNI/O are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MTP, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom,
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA
and Z-Scale are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip
Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2013, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: ISBN: 978-1-62076-908-9

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES
USER’S GUIDE

Table of Contents
Preface ... 7

Part 1 – MPLAB XC16 Assembler

Chapter 1. Assembler Overview
1.1 Introduction ... 15
1.2 Feature Set ... 15
1.3 Assembler Usage ... 15
1.4 Input/Output Files ... 16

Chapter 2. Assembler Command Line Options
2.1 Introduction ... 19
2.2 Command-Line Syntax ... 19
2.3 Options that Modify the Listing Output ... 20
2.4 Options that Control Informational Output .. 30
2.5 Options that Control Output File Creation .. 31
2.6 Other Options ... 32

Chapter 3. MPLAB XC16 Assembly Language
3.1 Introduction ... 33
3.2 Internal Preprocessor ... 33
3.3 Source Code Format .. 34
3.4 Characters .. 37
3.5 Constants ... 38
3.6 Symbols .. 40
3.7 Expressions .. 43
3.8 Operators ... 44
3.9 Special Operators ... 45

Chapter 4. Assembler Directives
4.1 Introduction ... 51
4.2 Directives that Define Sections .. 52
4.3 Directives that Fill Program Memory .. 61
4.4 Directives that Initialize Constants ... 63
4.5 Directives that Declare Symbols .. 68
4.6 Directives that Define Symbols .. 70
4.7 Directives that Modify Section Alignment ... 71
4.8 Directives that Format the Output Listing ... 76
4.9 Directives that Control Conditional Assembly .. 77
 2013 Microchip Technology Inc. DS52106A-page 3

16-Bit Assembler, Linker and Utilities User’s Guide
4.10 Directives for Substitution/Expansion ... 79
4.11 Miscellaneous Directives .. 82
4.12 Directives for Debug Information .. 84

Chapter 5. Assembler Listing File
5.1 Introduction ... 87
5.2 Generation .. 87
5.3 Contents ... 88

Chapter 6. Assembler Errors/Warnings/Messages
6.1 Introduction ... 91
6.2 Fatal Errors ... 91
6.3 Errors .. 92
6.4 Warnings .. 100
6.5 Messages ... 106

Part 2 – MPLAB XC16 Object Linker

Chapter 7. Linker Overview
7.1 Introduction ... 109
7.2 Feature Set ... 109
7.3 Linker Usage .. 109
7.4 Input/Output Files ... 110

Chapter 8. Linker Command Line Interface
8.1 Introduction ... 113
8.2 Highlights .. 113
8.3 Syntax .. 113
8.4 Options that Control Output File Creation .. 115
8.5 Options that Control Run-time Initialization .. 122
8.6 Options that Control Informational Output .. 124
8.7 Options that Modify the Link Map Output ... 127
8.8 Options that Specify CodeGuard™ Security Features 128
8.9 Options that Control the Preprocessor ... 130

Chapter 9. Linker Scripts
9.1 Introduction ... 131
9.2 Highlights .. 131
9.3 Overview of Linker Scripts .. 131
9.4 Command Line Information .. 132
9.5 Contents of a Linker Script ... 132
9.6 Creating a Custom Linker Script .. 144
9.7 Linker Script Command Language ... 144
9.8 Expressions in Linker Scripts ... 160

Chapter 10. Linker Processing
10.1 Introduction ... 167
10.2 Highlights .. 167
10.3 Overview of Linker Processing ... 167
DS52106A-page 4 2013 Microchip Technology Inc.

Table of Contents
10.4 Memory Addressing ... 170
10.5 Linker Allocation ... 172
10.6 Global and Weak Symbols ... 177
10.7 Handles .. 177
10.8 Initialized Data .. 179
10.9 Read-only Data .. 182
10.10 Stack Allocation .. 184
10.11 Heap Allocation .. 185
10.12 Interrupt Vector Tables ... 185
10.13 Optimizing Memory Usage ... 199
10.14 Boot and Secure Segments ... 203
10.15 Notable Symbols .. 205

Chapter 11. Linker Examples
11.1 Introduction ... 207
11.2 Highlights .. 207
11.3 Memory Addresses and Relocatable Code .. 208
11.4 Locating a Variable at a Specific Address .. 209
11.5 Locating a Function at a Specific Address ... 209
11.6 Using More than 32K of Constants .. 210
11.7 Locating a Constant at a Specific Address in Program Memory 212
11.8 Locating and Accessing Data in EEPROM Memory 213
11.9 Creating an Incrementing Modulo Buffer in X Memory 214
11.10 Creating a Decrementing Modulo Buffer in Y Memory 215
11.11 Locating the Stack at a Specific Address ... 215
11.12 Locating and Reserving Program Memory ... 216

Chapter 12. Linker Map File
12.1 Introduction ... 217
12.2 Generation .. 217
12.3 Contents ... 217

Chapter 13. Linker Errors/Warnings
13.1 Introduction ... 221
13.2 Highlights .. 221
13.3 Errors .. 221
13.4 Warnings .. 227

Part 3 – 16-Bit Utilities (including the Archiver/Librarian)

Chapter 14. MPLAB XC16 Object Archiver/Librarian
14.1 Introduction ... 231
14.2 Highlights .. 231
14.3 Archiver/Librarian and Other Development Tools 232
14.4 Feature Set ... 232
14.5 Input/Output Files ... 232
14.6 Syntax .. 232
 2013 Microchip Technology Inc. DS52106A-page 5

16-Bit Assembler, Linker and Utilities User’s Guide
14.7 Options ... 233
14.8 Scripts .. 235

Chapter 15. Other Utilities
15.1 Introduction ... 237
15.2 Highlights .. 237
15.3 xc16-bin2hex Utility .. 238
15.4 xc16-nm Utility .. 240
15.5 xc16-objdump Utility ... 243
15.6 xc16-ranlib Utility .. 247
15.7 xc16-strings Utility .. 248
15.8 xc16-strip Utility .. 250

Part 4 – Appendices

Appendix A. Deprecated Features
A.1 Introduction .. 255
A.2 Highlights ... 255
A.3 Assembler Directives that Define Sections .. 255
A.4 Reserved Section Names with Implied Attributes 256
A.5 Environmental Variables .. 256

Appendix B. Useful Tables
B.1 Introduction .. 257
B.2 Highlights ... 257
B.3 ASCII Character Set .. 257
B.4 Hexadecimal to Decimal Conversion ... 258

Appendix C. GNU Free Documentation License
C.1 PREAMBLE ... 259
C.2 APPLICABILITY AND DEFINITIONS .. 259
C.3 VERBATIM COPYING ... 261
C.4 COPYING IN QUANTITY .. 261
C.5 MODIFICATIONS .. 262
C.6 COMBINING DOCUMENTS .. 263
C.7 COLLECTIONS OF DOCUMENTS ... 263
C.8 AGGREGATION WITH INDEPENDENT WORKS 264
C.9 TRANSLATION .. 264
C.10 TERMINATION .. 264
C.11 FUTURE REVISIONS OF THIS LICENSE .. 265
C.12 RELICENSING .. 265

Index ...267
Worldwide Sales and Service ...278
DS52106A-page 6 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Preface
INTRODUCTION
This chapter contains general information that will be useful to know before using 16-bit
language tools. Items discussed include:
• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• myMicrochip Personalized Notification Service
• Customer Support

DOCUMENT LAYOUT
This document describes how to use GNU language tools to write code for 16-bit
applications. The document layout is as follows:
Part 1 – MPLAB® XC16 Assembler
• Chapter 1: Assembler Overview – gives an overview of assembler operation.
• Chapter 2: Assembler Command Line Interface – details command line options

for the assembler.
• Chapter 3: Assembler Syntax – describes syntax used with the assembler.
• Chapter 4: Assembler Expression Syntax and Operation – provides guidelines

for using complex expressions in assembler source files.
• Chapter 5: Assembler Symbols – describes what symbols are and how to use

them.
• Chapter 6: Assembler Directives – details the available assembler directives.
• Chapter 7: Assembler Errors/Warnings/Messages – contains a descriptive list

of the errors, warnings and messages generated by the 16-bit assembler.

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® X IDE online help,
available from the Help menu.
 2013 Microchip Technology Inc. DS52106A-page 7

16-Bit Assembler, Linker and Utilities User’s Guide
Part 2 – MPLAB XC16 Object Linker
• Chapter 8: Linker Overview – gives an overview of linker operation.
• Chapter 9: Linker Command Line Interface – details command line options for

the linker.
• Chapter 10: Linker Scripts – describes how to generate and use linker scripts to

control linker operation.
• Chapter 11: Linker Processing – discusses how the linker builds an application

from input files.
• Chapter 12: Linker Examples – discusses a number of 16-bit specific linker

examples and shows the equivalent syntax in C and assembly language.
• Chapter 13: Linker Errors/Warnings – contains a descriptive list of the errors

and warnings generated by the 16-bit linker.
Part 3 – 16-Bit Utilities (including the Archiver/Librarian)
• Chapter 14: MPLAB XC16 Object Archiver/Librarian – details command line

options for the librarian.
• Chapter 15: Other Utilities – gives an overview of all the other utilities and their

operation. Current utilities are:
- xc16-bin2hex: Converts a linked object file into an Intel® hex file.
- xc16-nm: Lists symbols from an object file.
- xc16-objdump: Displays information about object files.
- xc16-ranlib Utility: Generates an index from the contents of an archive and

stores it in the archive.
- xc16-strings: Prints the printable character sequences.
- xc16-strip: Discards all symbols from an object file.

Part 5 – Appendices
• Appendix A: Deprecated Features – describes features that are considered

obsolete.

• Appendix B: Useful Tables – lists some useful tables: the ASCII character set and
hexadecimal to decimal conversion.

• Appendix C: GNU Free Documentation License – details the license requirements
for using the GNU language tools.
DS52106A-page 8 2013 Microchip Technology Inc.

Preface
CONVENTIONS USED IN THIS GUIDE
The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS
Description Represents Examples

Arial font:
Italic characters Referenced books MPLAB® X IDE User’s Guide

Emphasized text ...is the only compiler...
Initial caps A window the Output window

A dialog the Settings dialog
A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK
A tab Click the Power tab

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>
Courier font:
Plain Courier Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ’A’

Italic Courier A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mpasmwin [options]
file [options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

Sidebar Text
Device Dependent.
This feature is not supported
on all devices.
Devices supported will be
listed in the title or text.

xmemory attribute

DD
 2013 Microchip Technology Inc. DS52106A-page 9

16-Bit Assembler, Linker and Utilities User’s Guide
RECOMMENDED READING
This documentation describes how to use 16-bit language tools. Other useful
documents are listed below. The following Microchip documents are available and
recommended as supplemental reference resources.
Readme Files
For the latest information on Microchip tools, read the associated Readme files (HTML
files) included with the software.
16-Bit Language Tools Getting Started (DS70094)
A guide to installing and working with the Microchip language tools for 16-bit devices.
Examples using the 16-bit simulator SIM30 (a component of MPLAB SIM) are
provided.
MPLAB® XC16 C Compiler User’s Guide (DS52071)
A guide to using the 16-bit C compiler. The 16-bit linker is used with this tool.
16-Bit Language Tools Libraries (DS51456)
A descriptive listing of libraries available for Microchip 16-bit devices. This includes
standard (including math) libraries and compiler built-in functions. DSP and 16-bit
peripheral libraries are described in Readme files provided with each peripheral library
type.
Device-Specific Documentation
The Microchip website contains many documents that describe 16-bit device functions
and features. Among these are:
• Individual and family data sheets
• Family reference manuals
• Programmer’s reference manuals
DS52106A-page 10 2013 Microchip Technology Inc.

Preface
THE MICROCHIP WEB SITE
Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:
• Product Support – Data sheets and errata, application notes and sample

programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

myMICROCHIP PERSONALIZED NOTIFICATION SERVICE
Microchip's personal notification service helps keep customers current on their
Microchip products of interest. Subscribers will receive e-mail notification whenever
there are changes, updates, revisions or errata related to a specified product family or
development tool.
Please visit http://www.microchip.com/pcn to begin the registration process and select
your preferences to receive personalized notifications. A FAQ and registration details
are available on the page, which can be opened by selecting the link above.
When you are selecting your preferences, choosing “Development Systems” will
populate the list with available development tools. The main categories of tools are
listed below:
• Compilers – The latest information on Microchip C compilers, assemblers, linkers

and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM™ assembler); all MPLAB linkers (including
MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object
librarian).

• Emulators – The latest information on Microchip in-circuit emulators.These
include the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators

• In-Circuit Debuggers – The latest information on Microchip in-circuit debuggers.
These include the MPLAB ICD 2 and 3 in-circuit debuggers and PICkit™ 2 and 3
debug express.

• MPLAB® IDE – The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include
the device (production) programmers MPLAB REAL ICE in-circuit emulator,
MPLAB ICD 3 in-circuit debugger, MPLAB PM3, and PRO MATE® II and
development (nonproduction) programmers MPLAB ICD 2 in-circuit debugger,
PICSTART® Plus and PICkit 1, 2 and 3.

• Starter/Demo Boards – These include MPLAB Starter Kit boards, PICDEM demo
boards, and various other evaluation boards.
 2013 Microchip Technology Inc. DS52106A-page 11

http://www.microchip.com
http://www.microchip.com/pcn

16-Bit Assembler, Linker and Utilities User’s Guide
CUSTOMER SUPPORT
Users of Microchip products can receive assistance through several channels:
• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.
Technical support is available through the web site at: http://support.microchip.com.
Send notification of documentation errors or comments to Microchip via e-mail to
docerrors@microchip.com.
DS52106A-page 12 2013 Microchip Technology Inc.

http://support.microchip.com

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Part 1 – MPLAB XC16 Assembler
Chapter 1. Assembler Overview ... 15
Chapter 2. Assembler Command Line Options... 19
Chapter 3. MPLAB XC16 Assembly Language.. 33
Chapter 4. Assembler Directives .. 51
Chapter 5. Assembler Listing File .. 87
Chapter 6. Assembler Errors/Warnings/Messages ... 91
 2013 Microchip Technology Inc. DS52106A-page 13

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 14 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 1. Assembler Overview
1.1 INTRODUCTION
MPLAB XC16 Assembler produces relocatable machine code from symbolic assembly
language for the dsPIC® DSC and PIC24 MCU families of devices. The assembler is
an application that provides a platform for developing assembly language code. The
assembler is a port of the GNU assembler from the Free Software Foundation.
Topics covered in this chapter are:
• Feature Set
• Assembler Usage
• Input/Output Files

1.2 FEATURE SET
Notable features of the assembler include:
• Support for the entire 16-bit instruction set
• Support for fixed-point and floating-point data
• Support for ELF and COFF object formats
• Available for Windows, Linux and Mac OS
• Command Line Interface
• Rich Directive Set
• Flexible Macro Language
• Available for MPLAB® X IDE and MPLAB IDE v8

1.3 ASSEMBLER USAGE
The MPLAB XC16 Assembler translates user assembly source files into relocatable
object files. These object files can then be put into an archive (MPLAB XC16 Object
Archiver/Librarian) or linked with other relocatable object files and archives to create an
executable file (MPLAB XC16 Object Linker). See the “MPLAB XC16 C Compiler
User’s Guide” (DS52071) for an overview of the tools process flow.
Typically the command-line driver, xc16-gcc, is used to invoke the assembler as it can
be passed assembler source files as input; however, the options for the assembler are
supplied here for instances where the assembler is being called directly, or when
options need to be set in the assembler tab of the Build Options dialog (MPLAB IDE
v8) or assembler category of the Project Properties window (MPLAB X IDE).
The assembler command line may contain options and file names. For details on com-
mand line option syntax, see Section 2.2 “Command-Line Syntax”.
Note that the assembler will not produce any messages unless there are errors or
warnings – there are no “assembly completed” messages. For more on messages, see
Chapter 6. “Assembler Errors/Warnings/Messages”.
 2013 Microchip Technology Inc. DS52106A-page 15

16-Bit Assembler, Linker and Utilities User’s Guide
1.4 INPUT/OUTPUT FILES
Standard assembler input and output files are listed below.

Unlike the MPASM™ assembler (for use with 8-bit PIC® MCUs), MPLAB XC16 Assem-
bler does not generate error files, hex files, or symbol and debug files. The assembler
is capable of creating a listing file and a relocatable object file (that may or may not con-
tain debugging information). MPLAB XC16 Object Linker is used with the assembler to
produce the final object files, map files and final executable file for debugging with
MPLAB X IDE or MPLAB IDE v8 (see Figure 1.2).

1.4.1 Source File
The assembler accepts, as input, a source file that consists of 16-bit device instruc-
tions, assembler directives and comments. A sample source file is shown in
Example 1-1.

Extension Description

Input
.s Source File

Output
.o Object File

.lst Listing File

Note: Microchip Technology strongly suggests an .s extension for assembly
source files. This will enable you to easily use the C compiler driver without
having to specify the option to tell the driver that the file should be treated
as an assembly file. See the “MPLAB® XC16 C Compiler User’s Guide”
(DS52071) for more details on the C compiler driver.
DS52106A-page 16 2013 Microchip Technology Inc.

Assembler Overview
EXAMPLE 1-1: SAMPLE ASSEMBLER CODE

 .title " Sample dsPIC Assembler Source Code"
 .sbttl " For illustration only."

 ; dsPIC registers
 .equ CORCONL, CORCON
 .equ PSV,2

 .section .const,psv
hello:
 .ascii "Hello world!\n\0"

 .text
 .global __reset
__reset:
 ; set PSVPAG to page that contains 'hello'
 mov #psvpage(hello),w0
 mov w0,PSVPAG

 ; enable Program Space Visibility
 bset.b CORCONL,#PSV

 ; make a pointer to 'hello'
 mov #psvoffset(hello),w0

 .end

For more information, see Chapter 3. “Assembler Syntax” and Chapter
4. “Assembler Directives”.

1.4.2 Object File
The assembler creates a relocatable object file. These object files do not yet have
addresses resolved and must be linked before they can be used for executables.
By default, the name of the object file created is a.out. Specify the -o option (see
Chapter 2. “Assembler Command Line Options”) on the command line to override
the default name.
By default, object files are created in the ELF format. To specify ELF or COFF format
explicitly, use the -omf option on the command line, as shown:
xc16-as -omf=elf test.s
xc16-as -omf=coff test2.s

Alternatively, the environment variable XC16_OMF may be used to specify object file
format for the 16-bit language tools.

1.4.3 Listing File
The assembler has the capability to produce listing files. For details on how to generate
a listing file and the components of that file, see Chapter 5. “Assembler Listing File”.
 2013 Microchip Technology Inc. DS52106A-page 17

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 18 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 2. Assembler Command Line Options
2.1 INTRODUCTION
MPLAB XC16 Assembler may be used on the command line interface as well as with
MPLAB X IDE or MPLAB IDE v8. The following options may be used with any of these
interfaces.
Topics covered in this chapter are:
• Command-Line Syntax
• Options that Modify the Listing Output
• Options that Control Informational Output
• Options that Control Output File Creation
• Other Options

2.2 COMMAND-LINE SYNTAX
The assembler command line may contain options and file names. Options may appear
in any order and may be before, after or between file names. The order of file names
determines the order of assembly.
xc16-as [options|sourcefiles]...

‘--’ (two hyphens) by itself names the standard input file explicitly as one of the files
for the assembler to translate. Except for ‘--’, any command line argument that begins
with a hyphen (‘-’) is an option. Each option changes the behavior of the assembler,
but no option changes the way another option works.
Some options require exactly one file name to follow them. The file name may either
immediately follow the option’s letter or it may be the next command line argument. For
example, to specify an output file named test.o, either of the following options would
be acceptable:
• -o test.o
• -otest.o

Note: Command line options are case sensitive.
 2013 Microchip Technology Inc. DS52106A-page 19

16-Bit Assembler, Linker and Utilities User’s Guide
2.3 OPTIONS THAT MODIFY THE LISTING OUTPUT
The following options are used to control the listing output. For debugging and general
analysis of code operation, a listing file is helpful. Constructing one with useful informa-
tion is accomplished using the options in this section.
• -a[suboption] [=file]

• --listing-lhs-width #

• --listing-lhs-width2 #

• --listing-rhs-width #

• --listing-cont-lines #

2.3.1 -a[suboption] [=file]
The -a option enables listing output. The -a option supports the following suboptions
to further control what is included in the assembly listing:

If no suboptions are specified, the default suboptions used are hls; the -a option by
itself requests high-level, assembly, and symbolic listing. You can use other letters to
select specific options for the listing output.
The letters after the -a may be combined into one option. So, for example, instead of
specifying -al -an on the command line, you could specify -aln. Most of the exam-
ples in the following sections combine the section’s suboption with -al, because -al
is required for an assembly listing.

-ac Omit false conditionals
-ad Omit debugging directives
-ah Include high-level source
-ai Include section information
-al Include assembly
-am Include macro expansions
-an Omit forms processing
-as Include symbols
-a=file Output listing to specified file (must be in current directory).
DS52106A-page 20 2013 Microchip Technology Inc.

Assembler Command Line Options
2.3.1.1 -ac

-ac omits false conditionals from a listing. Any lines that are not assembled because
of a false .if or .ifdef (or the .else of a true .if or .ifdef) will be omitted from
the listing. Example 2-1 shows a listing where the -ac option was not used.
Example 2-2 shows a listing for the same source where the -ac option was used.

EXAMPLE 2-1: LISTING FILE GENERATED WITH -al COMMAND LINE
OPTION

MPLAB ASM30 Listing: example2.1.s page 1

 1 .data
 2 .if 0
 3 .if 1
 4 .endif
 5 .long 0
 6 .if 0
 7 .long 0
 8 .endif
 9 .else
 10 .if 1
 11 .endif
 12 0000 02 00 00 00 .long 2
 13 .if 0
 14 .long 3
 15 .else
 16 0004 04 00 00 00 .long 4
 17 .endif
 18 .endif
 19
 20 .if 0
 21 .long 5
 22 .elseif 1
 23 .if 0
 24 .long 6
 25 .elseif 1
 26 0008 07 00 00 00 .long 7
 27 .endif
 28 .elseif 1
 29 .long 8
 30 .else
 31 .long 9
 32 .endif
 2013 Microchip Technology Inc. DS52106A-page 21

16-Bit Assembler, Linker and Utilities User’s Guide
EXAMPLE 2-2: LISTING FILE GENERATED WITH -alc COMMAND LINE
OPTION

MPLAB ASM30 Listing: example2.2.s page 1

 1 .data
 2 .if 0
 9 .else
 10 .if 1
 11 .endif
 12 0000 02 00 00 00 .long 2
 13 .if 0
 15 .else
 16 0004 04 00 00 00 .long 4
 17 .endif
 18 .endif
 19
 20 .if 0
 22 .elseif 1
 23 .if 0
 25 .elseif 1
 26 0008 07 00 00 00 .long 7
 27 .endif
 28 .elseif 1
 30 .else
 32 .endif

Note: Some lines have been omitted, due to the -ac option; i.e., lines 3-8, 14, 21,
24, 29 and 31.
DS52106A-page 22 2013 Microchip Technology Inc.

Assembler Command Line Options
2.3.1.2 -ad

-ad omits debugging directives from the listing. This is useful if a compiler that
was given a debugging option generated the assembly source code. The compiler-
generated debugging directives will not clutter the listing. Example 2-3 shows a listing
using both the d and h suboptions. Compared to using the h sub-option alone (see next
section), the listing is much cleaner.

EXAMPLE 2-3: LISTING FILE GENERATED WITH -alhd COMMAND LINE
OPTION

MPLAB ASM30 Listing: example2.3.s page 1

 1 .file "example2.3.c"
 2 .text
 3 .align 2
 9 .global _main ; export
 10 _main:
 1:example2.3.c **** extern int ADD (int, int);
 2:example2.3.c ****
 3:example2.3.c **** int
 4:example2.3.c **** main(void)
 5:example2.3.c **** {
 16 .set __PA__,1
 17 000000 00 00 FA lnk #0
 18
 6:example2.3.c **** return ADD(4, 5);
 20 000002 51 00 20 mov #5,w1
 21 000004 40 00 20 mov #4,w0
 22 000006 00 00 02 call _ADD
 22 00 00 00
 7:example2.3.c **** }
 29
 30 00000a 00 80 FA ulnk
 31 00000c 00 00 06 return
 32 .set __PA__,0
 37
 38 .end
 2013 Microchip Technology Inc. DS52106A-page 23

16-Bit Assembler, Linker and Utilities User’s Guide
2.3.1.3 -ah

-ah requests a high-level language listing. High-level listings require that the assembly
source code is generated by a compiler, a debugging option like -g is given to the com-
piler, and assembly listings (-al) are requested. -al requests an output program
assembly listing. Example 2-4 shows a listing that was generated using the -alh com-
mand line option.

EXAMPLE 2-4: LISTING FILE GENERATED WITH -alh COMMAND LINE
OPTION

MPLAB ASM30 Listing: example2.4.s page 1

 1 .file "example2.4.c"
 2 .text
 3 .align 2
 4 .def _main
 5 .val _main
 6 .scl 2
 7 .type 044
 8 .endef
 9 .global _main ; export
 10 _main:
 11 .def .bf
 12 .val .
 13 .scl 101
 1:example2.4.c **** extern int ADD (int, int);
 2:example2.4.c ****
 3:example2.4.c **** int
 4:example2.4.c **** main(void)
 5:example2.4.c **** {
 14 .line 5
 15 .endef
 16 .set __PA__,1
 17 000000 00 00 FA lnk #0
 18
 6:example2.4.c **** return ADD(4, 5);
 19 .ln 6
 20 000002 51 00 20 mov #5,w1
 21 000004 40 00 20 mov #4,w0
 22 000006 00 00 02 call _ADD
 22 00 00 00
 7:example2.4.c **** }
 23 .ln 7
 24 .def .ef
 25 .val .
 26 .scl 101
 27 .line 7
 28 .endef
 29
 30 00000a 00 80 FA ulnk
 31 00000c 00 00 06 return
 32 .set __PA__,0
 33 .def _main
 34 .val .
 35 .scl -1
 36 .endef
 37
 38 .end
DS52106A-page 24 2013 Microchip Technology Inc.

Assembler Command Line Options
2.3.1.4 -ai

-ai displays information on each of the code and data sections. This information con-
tains details on the size of each of the sections and then a total usage of program and
data memory. Example 2-5 shows a listing where the -ai option was used.

EXAMPLE 2-5: LISTING FILE GENERATED WITH -ai COMMAND LINE
OPTION

SECTION INFORMATION:

Section Length (PC units) Length (bytes) (dec)
------- ----------------- --------------------
.text 0x16 0x21 (33)

TOTAL PROGRAM MEMORY USED (bytes): 0x21 (33)

Section Length (bytes) (dec)
------- --------------------
.data 0 (0)
.bss 0 (0)

 TOTAL DATA MEMORY USED (bytes): 0 (0)

2.3.1.5 -al

-al requests an assembly listing. This sub-option may be used with other suboptions.
See the other examples in this section.

2.3.1.6 -am

-am expands macros in a listing. Example 2-6 shows a listing where the -am option
was not used. Example 2-7 shows a listing for the same source where the -am option
was used.

EXAMPLE 2-6: LISTING FILE GENERATED WITH -al COMMAND LINE
OPTION

MPLAB ASM30 Listing: example2.5.s page 1

 1 .text
 2 .macro div_s reg1, reg2
 3 repeat #18-1
 4 div.sw \reg1,\reg2
 5 .endm
 6
 7 .macro div_u reg1, reg2
 8 repeat #18-1
 9 div.uw \reg1,\reg2
 10 .endm
 11
 12 000000 40 01 20 mov #20, w0
 13 000002 52 00 20 mov #5, w2
 14 000004 11 00 09 div_u w0, w2
 14 02 80 D8
 15
 16 000008 00 02 BE mov.d w0, w4
 17
 18 00000a 40 01 20 mov #20, w0
 19 00000c B3 FF 2F mov #-5, w3
 20 00000e 11 00 09 div_s w0, w3
 20 03 00 D8
 2013 Microchip Technology Inc. DS52106A-page 25

16-Bit Assembler, Linker and Utilities User’s Guide
EXAMPLE 2-7: LISTING FILE GENERATED WITH -alm COMMAND LINE
OPTION

MPLAB ASM30 Listing: example2.6.s page 1

 1 .text
 2 .macro div_s reg1, reg2
 3 repeat #18-1
 4 div.sw \reg1,\reg2
 5 .endm
 6
 7 .macro div_u reg1, reg2
 8 repeat #18-1
 9 div.uw \reg1,\reg2
 10 .endm
 11
 12 000000 40 01 20 mov #20, w0
 13 000002 52 00 20 mov #5, w2
 14 div_u w0, w2
 14 000004 11 00 09 > repeat #18-1
 14 000006 02 80 D8 > div.uw w0,w2
 15
 16 000008 00 02 BE mov.d w0, w4
 17
 18 00000a 40 01 20 mov #20, w0
 19 00000c B3 FF 2F mov #-5, w3
 20 div_s w0, w3
 20 00000e 11 00 09 > repeat #18-1
 20 000010 03 00 D8 > div.sw w0,w3

Note: > signifies expanded macro instructions.
DS52106A-page 26 2013 Microchip Technology Inc.

Assembler Command Line Options
2.3.1.7 -an

-an turns off all forms processing that would be performed by the listing directives
.psize, .eject, .title and .sbttl. Example 2-8 shows a listing where the -an
option was not used. Example 2-9 shows a listing for the same source where the -an
option was used.

EXAMPLE 2-8: LISTING FILE GENERATED WITH -al COMMAND LINE
OPTION

MPLAB ASM30 Listing: example2.7.s page 1
User's Guide Example
 Listing Options
 1 .text
 2 .title "User's Guide Example"
 3 .sbttl " Listing Options"
 4 .psize 10
 5
 6 000000 50 00 20 mov #5, w0
 7 000002 61 00 20 mov #6, w1
MPLAB ASM30 Listing: example2.7.s page 2
User's Guide Example
 Listing Options
 8 000004 01 01 40 add w0, w1, w2
 9 .eject
MPLAB ASM30 Listing: example2.7.s page 3
User's Guide Example
 Listing Options
 10
 11 000006 24 00 20 mov #2, w4
 12 000008 03 00 09 repeat #3
 13 00000a 04 22 B8 mul.uu w4, w4, w4
 14
 15 00000c 16 00 20 mov #1, w6
 16 00000e 64 33 DD sl w6, #4, w6
MPLAB ASM30 Listing: example2.7.s page 4
User's Guide Example
 Listing Options
 17
 18 000010 06 20 E1 cp w4, w6
 19 000012 00 00 32 bra z, done
 20
 21 000014 00 00 00 nop
 22
 23 done:
MPLAB ASM30 Listing: example2.7.s page 5
User's Guide Example
 Listing Options
 24
 25 .end
 2013 Microchip Technology Inc. DS52106A-page 27

16-Bit Assembler, Linker and Utilities User’s Guide
EXAMPLE 2-9: LISTING FILE GENERATED WITH -aln COMMAND LINE
OPTION

 1 .text
 2 .title "User's Guide Example"
 3 .sbttl " Listing Options"
 4 .psize 10
 5
 6 000000 50 00 20 mov #5, w0
 7 000002 61 00 20 mov #6, w1
 8 000004 01 01 40 add w0, w1, w2
 9 .eject
 10
 11 000006 24 00 20 mov #2, w4
 12 000008 03 00 09 repeat #3
 13 00000a 04 22 B8 mul.uu w4, w4, w4
 14
 15 00000c 16 00 20 mov #1, w6
 16 00000e 64 33 DD sl w6, #4, w6
 17
 18 000010 06 20 E1 cp w4, w6
 19 000012 00 00 32 bra z, done
 20
 21 000014 00 00 00 nop
 22
 23 done:
 24
 25 .end

2.3.1.8 -as

-as requests a symbol table listing. Example 2-10 shows a listing that was generated
using the -as command line option. Note that both defined and undefined symbols are
listed.

EXAMPLE 2-10: LISTING FILE GENERATED WITH -as COMMAND LINE
OPTION

MPLAB ASM30 Listing: sample2b.s

DEFINED SYMBOLS
 ABS:00000000 fake
 sample2b.s:4 .text:00000000 __reset
 sample2b.s:13 .text:0000001c L2
 .text:00000000 .text
 .data:00000000 .data
 .bss:00000000 .bss

UNDEFINED SYMBOLS
_i
_j

2.3.1.9 -a=file

=file defines the name of the output file. This file must be in the current directory.
DS52106A-page 28 2013 Microchip Technology Inc.

Assembler Command Line Options
2.3.2 --listing-lhs-width #
The --listing-lhs-width option is used to set the width of the output data column
of the listing file. By default, this is set to 3 for program memory and 4 for data memory.
The following line is extracted from a listing. The output data column is in bold text.
 6 000000 50 00 20 mov #5, w0

If the option --listing-lhs-width 2 is used, then the same line will appear as fol-
lows in the listing:
 6 000000 50 00 mov #5, w0
 6 20

2.3.3 --listing-lhs-width2 #
The --listing-lhs-width2 option is used to set the width of the continuation lines
of the output data column of the listing file. By default, this is set to 3 for program mem-
ory and 4 for data memory. If the specified width is smaller than the first line, this option
is ignored. The following lines are extracted from a listing. The output data column is in
bold.
 2 0000 50 6C 65 61 .ascii "Please pay inside."
 2 73 65 20 70
 2 61 79 20 69
 2 6E 73 69 64
 2 65 2E

If the option --listing-lhs-width2 7 is used, then the same line will appear as
follows in the listing:
 2 0000 50 6C 65 61 .ascii "Please pay inside."
 2 73 65 20 70 61 79 20
 2 69 6E 73 69 64 65 2E

2.3.4 --listing-rhs-width #
The --listing-rhs-width option is used to set the maximum width in characters
of the lines from the source file. By default, this is set to 100. The following lines are
extracted from a listing that was created without using the --listing-rhs-width
option. The text in bold are the lines from the source file.
 2 0000 54 68 69 73 .ascii "This line is long."
 2 20 6C 69 6E
 2 65 20 69 73
 2 20 6C 6F 6E
 2 67 65 72 20

If the option --listing-rhs-width 20 is used, then the same line will appear as
follows in the listing:
 2 0000 54 68 69 73 .ascii "This line i
 2 20 6C 69 6E
 2 65 20 69 73
 2 20 6C 6F 6E
 2 67 65 72 20

The line is truncated (not wrapped) in the listing, but the data is still there.
 2013 Microchip Technology Inc. DS52106A-page 29

16-Bit Assembler, Linker and Utilities User’s Guide
2.3.5 --listing-cont-lines #
The --listing-cont-lines option is used to set the maximum number of continu-
ation lines used for the output data column of the listing. By default, this is 8. The fol-
lowing lines are extracted from a listing that was created without using
the--listing-cont-lines option. The text in bold shows the continuation lines
used for the output data column of the listing.
2 0000 54 68 69 73 .ascii "This is a long character sequence."
2 20 69 73 20
2 61 20 6C 6F
2 6E 67 20 63
2 68 61 72 61
2 63 74 65 72
2 20 73 65 71
2 75 65 6E 63
2 65 2E

Notice that the number of bytes displayed matches the number of bytes in the ASCII
string; however, if the option --listing-cont-lines 2 is used, then the output
data will be truncated after 2 continuation lines as shown below.
2 0000 54 68 69 73 .ascii "This is a long character sequence."
2 20 69 73 20
2 61 20 6C 6F

2.4 OPTIONS THAT CONTROL INFORMATIONAL OUTPUT
The options in this section control how information is output. Errors, warnings and mes-
sages concerning code translation and execution are controlled through several of the
options in this section.
Any item in parenthesis shows the short method of specifying the option, e.g.,
--no-warn also may be specified as -W.

2.4.1 --fatal-warnings
Warnings are treated as if they were errors.

2.4.2 --no-warn (-W)
Warnings are suppressed. If you use this option, no warnings are issued. This option
only affects the warning messages. It does not change how your file is assembled.
Errors are still reported.

2.4.3 --warn
Warnings are issued, if appropriate. This is the default behavior.

2.4.4 -J
No warnings are issued about signed overflow.

2.4.5 --help
The assembler will show a message regarding the command line usage and options.
The assembler then exits.

2.4.6 --target-help
The assembler will show a message regarding the 16-bit device specific command line
options. The assembler then exits.
DS52106A-page 30 2013 Microchip Technology Inc.

Assembler Command Line Options
2.4.7 --version
The assembler version number is displayed. The assembler then exits.

2.4.8 --verbose (-v)
The assembler version number is displayed. The assembler does not exit. If this is the
only command line option used, then the assembler will print out the version and wait
for entry of the assembly source through standard input. Use <CTRL>-D to send an
EOF character to end assembly.

2.5 OPTIONS THAT CONTROL OUTPUT FILE CREATION
The options in this section control how the output file is created. For example, to
change the name of the output object file, use -o.
Any item in parenthesis shows the short method of specifying the option, e.g.,
--keep-locals may be specified as -L also.

2.5.1 -g
Generate symbolic debugging information.

2.5.2 --keep-locals (-L)
Keep local symbols, i.e., labels beginning with .L (upper case only). Normally you do
not see such labels when debugging, because they are intended for the use of pro-
grams (like compilers) that compose assembler programs. Normally both the assem-
bler and linker discard such symbols. This option tells the assembler to retain those
symbols in the object files.

2.5.3 -o objfile
Name the object file output objfile. In the absence of errors, there is always one
object file output when you run the assembler. By default, it has the name a.out. Use
this option (which takes exactly one filename) to give the object file a different name.
Whatever the object file is called, the assembler overwrites any existing file with the
same name.

2.5.4 -omf = format
Use this option to specify the object file format. Valid format names are ELF and COFF.
Object file format names are not case sensitive.

2.5.5 -R
This option tells the assembler to write the object file as if all data-section data is
located in the text section. The data section part of your object file is zero bytes long
because all its bytes are located in the text section.

2.5.6 --relax
Turn relaxation on. Convert absolute calls and gotos to relative calls and branches
when possible.

2.5.7 --no-relax
Turn relaxation off. This is the default behavior.

Note: For COFF, the option -g does not work with any section other than .text.
 2013 Microchip Technology Inc. DS52106A-page 31

16-Bit Assembler, Linker and Utilities User’s Guide
2.5.8 -Z
Generate object file even after errors. After an error message, the assembler normally
produces no output. If for some reason, you are interested in object file output even
after the assembler gives an error message, use the -Z option. If there are any errors,
the assembler continues anyway, and writes an object file after a final warning mes-
sage of the form “n errors, m warnings, generating bad object file”.

2.5.9 -MD file
Write dependency information to file. The assembler can generate a dependency file.
This file consists of a single rule suitable for describing the dependencies of the main
source file. The rule is written to the file named in its argument. This feature can be
used in the automatic updating of makefiles.

2.6 OTHER OPTIONS
The options in this section perform functions not defined in previous sections.

2.6.1 --defsym sym=value
Define symbol sym to given value.

2.6.2 -I dir
Use this option to add dir to the list of directories that the assembler searches for files
specified in .include directives. You may use -I as many times as necessary to
include a variety of paths. The current working directory is always searched first; after
that, the assembler searches any -I directories in the same order as they were spec-
ified (left to right) on the command line.

2.6.3 -p, --processor=PROC
Specify the target processor, e.g.:
xc16-as -p30F2010 file.s

The assembler defines macros based on the target processor setting, which can be
tested by conditional directives in source code. For example, include file
p30f2010.inc contains the following:
.ifndef __30F2010
 .error "Include file does not match processor setting"
.endif

In addition to the target processor, a macro to identify the device family is also defined.
For example:
.ifdef __dsPIC30F
 .print "dsPIC30F family selected"
.endif

Macros for the device families (see Section 3.6.6 “Predefined Symbols”) are defined
based on target processor setting.
DS52106A-page 32 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 3. MPLAB XC16 Assembly Language
3.1 INTRODUCTION
The source language accepted by the macro assembler is described here. All opcode
mnemonics and operand syntax are specific to the target device. The same assembler
application is used for compiler-generated intermediate assembly and hand-written
assembly source code.
Topics covered in this chapter are:
• Internal Preprocessor
• Source Code Format
• Characters
• Constants
• Symbols
• Expressions
• Operators
• Special Operators

3.2 INTERNAL PREPROCESSOR
The assembler has an internal preprocessor. The internal processor:
1. Adjusts and removes extra white space. It leaves one space or tab before the

keywords on a line, and turns any other white space on the line into a single
space.

2. Removes all comments, replacing them with a single space, or an appropriate
number of new lines.

3. Converts character constants into the appropriate numeric value.
If you have a single character (e.g., ‘b’) in your source code, this will be changed
to the appropriate numeric value. If you have a syntax error that occurs at the sin-
gle character, the assembler will not display ‘b’, but instead display the first digit
of the decimal equivalent.
For example, if you had .global mybuf, ‘b’ in your source code, the error mes-
sage would say “Error: Rest of line ignored. First ignored character is ‘9’.” Notice
the error message says ‘9’. This is because the ‘b’ was converted to its decimal
equivalent 98. The assembler is actually parsing .global mybuf,98

The internal processor does not do:
1. macro preprocessing
2. include file handling
3. anything else you may get from your C compiler’s preprocessor
You can do include file preprocessing with the .include directive. See Chapter
4. “Assembler Directives”.
You can use the C compiler driver to get other C-style preprocessing by giving the input
file a .S suffix. See the “MPLAB® XC16 C Compiler User’s Guide” (DS52071) for more
information.
 2013 Microchip Technology Inc. DS52106A-page 33

16-Bit Assembler, Linker and Utilities User’s Guide
If the first line of an input file is #NO_APP or if you use the -f option, white space and
comments are not removed from the input file. Within an input file, you can ask for white
space and comment removal in certain portions by putting a line that says #APP before
the text that may contain white space or comments, and putting a line that says
#NO_APP after this text. This feature is mainly intended to support assembly state-
ments in compilers whose output is otherwise free of comments and white space.

3.3 SOURCE CODE FORMAT
Assembly source code consists of statements and white spaces.
White space is one or more spaces or tabs. White space is used to separate pieces of
a source line. White space should be used to make your code easier for people to read.
Unless within character constants, any white space means the same as exactly one
space.
Each statement has the following general format and is followed by a new line.

• Label
• Mnemonic
• Directive
• Operands
• Arguments
• Comments

3.3.1 Label
A label is one or more characters chosen from the set composed of all letters, digits,
the underline character (_), and the period (.). Labels may not begin with a decimal
digit, except for the special case of a local symbol. (See Section 5.4 “Local Symbols”
for more information.) Case is significant. There is no length limit; all characters are sig-
nificant.
Label definitions must be immediately followed by a colon. A space, a tab, an end of
line, or assembler mnemonic or directive may follow the colon.
Label definitions may appear on a line by themselves and will reference the next
address.
The value of a label after linking is the absolute address of a location in memory.

3.3.2 Mnemonic
Mnemonics tell the assembler which machine instructions to assemble. For example,
addition (ADD), branches (BRA) or moves (MOV). Unlike labels that you create yourself,
mnemonics are provided by the assembly language. Mnemonics are not case sensi-
tive.
See the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for more
details.

Note: Excess white space, comments and character constants cannot be used
in the portions of the input text that are not preprocessed.

[label:] [mnemonic [operands]] [; comment]

OR

[label:] [directive [arguments]] [; comment]
DS52106A-page 34 2013 Microchip Technology Inc.

MPLAB XC16 Assembly Language
3.3.3 Directive
Assembler directives are commands that appear in the source code but are not trans-
lated directly into machine code. Directives are used to control the assembler, its input,
output and data allocation. The first character of a directive is a dot (.). More details
are provided in Chapter 4. “Assembler Directives” on the available directives.

3.3.4 Operands
Each machine instruction takes 0 to 8 operands. See the “16-bit MCU and DSC Pro-
grammer’s Reference Manual” (DS70157). Operands provide data and addressing
information to the instruction. Operands must be separated from mnemonics by one or
more spaces or tabs.
Commas should separate multiple operands. If commas do not separate operands, a
warning will be displayed and the assembler will take its best guess on the separation
of the operands. Operands consist of literals, file registers condition codes, destination
select, and accumulator select.

3.3.4.1 LITERALS

Literal values are distinguished with a preceding pound sign (‘#’). Literal values can be
hexadecimal, octal, binary or decimal format. Hexadecimal numbers are distinguished
by a leading 0x. Octal numbers are distinguished by a leading 0. Binary numbers are
distinguished by a leading B. Decimal numbers require no special leading or trailing
character.
Examples:
#0xe, #016, #0b1110 and #14 all represents the literal value 14.
#-5 represents the literal value -5.
#symbol represents the value of symbol.

3.3.4.2 FILE REGISTERS

File registers represent on-chip general purpose and SFRs. File registers are distin-
guished from literal values because they do not have the preceding pound sign.
Each of the following examples tells the processor to move data located in the file reg-
ister whose address is 14 to the working register w0:
mov 0xE, w0
mov 016, w0
mov 14, w0
.equ symbol, 14
mov symbol, w0

3.3.4.3 REGISTERS

The following register names are built into the assembler:
w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15, W0, W1, W2, W3,
W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15.

3.3.4.4 CONDITION CODES

Condition codes are used with BRA instructions. See the “16-bit MCU and DSC
Programmer’s Reference Manual” (DS70157) for more details.
bra C, label
 2013 Microchip Technology Inc. DS52106A-page 35

16-Bit Assembler, Linker and Utilities User’s Guide
3.3.4.5 DESTINATION SELECT

The PIC18CXXX-compatible instructions accept WREG as an optional argument to
specify whether the result should be placed into WREG (W0) or into the file register. See
the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for more
details.
add sym, WREG

3.3.4.6 ACCUMULATOR SELECT

The DSP instructions take an accumulator select operand (A or B) to specify which
accumulator to use.
ADD A

3.3.5 Arguments
Each directive takes 0 to 3 arguments. These arguments give additional information to
the directive on how it should carry out the command. Arguments must be separated
from directives by one or more spaces or tabs. Commas must separate multiple argu-
ments. More details are provided in Chapter 4. “Assembler Directives” on the avail-
able directives.

3.3.6 Comments
Comments can be represented in the assembler as single-line or multiple-line com-
ments.

3.3.6.1 SINGLE-LINE COMMENT

This type of comment extends from the comment character to the end of the line. For
a single line comment, use a semicolon (‘;’).
Example:
mov w0, w1;The rest of this line is a comment.

3.3.6.2 MULTIPLE-LINE COMMENT

This type of comment can span multiple lines. For a multiple-line comment, use
/* ... */. Multiple-line comments cannot be nested.
Example:
/* All
of these
lines
are
comments */
DS52106A-page 36 2013 Microchip Technology Inc.

MPLAB XC16 Assembly Language
3.4 CHARACTERS
The character set used is standard 7 bit ASCII. Alphabetic case is significant for iden-
tifiers, but not mnemonics and reserved words. Tabs are treated as equivalent to
spaces.

3.4.1 Delimiters
All numbers and identifiers must be delimited by white space, non-alphanumeric char-
acters or the end of a line.

3.4.2 Special Characters
There are a few characters that are special in certain contexts. Within a macro body,
the character & is used for token concatenation. To use the bitwise & operator within a
macro body, escape it by using && instead. In a macro argument list, the angle brackets
< and > are used to quote macro arguments.
Other special characters are described below.

TABLE 3-1: SPECIAL CHARACTERS AND USAGE
Character Character Description Syntax Usage

. period begins a directive
; semicolon begins a single-line comment
/* slash, asterisk begins a multiple-line comment
*/ asterisk, slash ends a multiple-line comment
: colon ends a label definition
pound begins a literal value

’c’ character in single quotes specifies a single character value
"string" character string in double quotes specifies a character string
 2013 Microchip Technology Inc. DS52106A-page 37

16-Bit Assembler, Linker and Utilities User’s Guide
3.5 CONSTANTS
A constant is a value written so that its value is known by inspection, without knowing
any context. Examples are:
.byte 74, 0112, 0b01001010, 0x4A, 0x4a, ’J’, ’\J’;All the same value
.ascii "Ring the bell\7";A string constant
.float 0f-31415926535897932384626433832795028841971.693993751E-40

3.5.1 Numeric Constants
The assembler distinguishes three kinds of numbers according to how they are stored
in the machine. Integers are numbers that would fit into a long in the C language.
Floating-point numbers are IEEE 754 floating-point numbers. Fixed-point numbers are
in Q-15 fixed-point format.

3.5.1.1 INTEGERS

A binary integer is ‘0b’ or ‘0B’ followed by zero or more of the binary digits ‘01’.
An octal integer is ‘0’ followed by zero or more of the octal digits ‘01234567’.
A decimal integer starts with a non-zero digit followed by zero or more decimal digits
‘0123456789’.
A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadecimal digits
‘0123456789abcdefABCDEF’.
To denote a negative integer, use the prefix operator ‘-’.

3.5.1.2 FLOATING-POINT NUMBERS

A floating-point number is represented in IEEE 754 format. A floating-point number is
written by writing (in order):
• an optional prefix, which consists of the digit ‘0’, followed by the letter ‘e’, ‘f ’ or ‘d’

in upper or lower case. Because floating point constants are used only with
.float and .double directives, the precision of the binary representation is
independent of the prefix.

• an optional sign: either ‘+’ or ‘-’.
• an optional integer part: zero or more decimal digits.
• an optional fractional part: ‘.’ followed by zero or more decimal digits.
• an optional exponent, consisting of:

- an ‘E’ or ‘e’.
- an optional sign: either ‘+’ or ‘-’.
- one or more decimal digits.

At least one of the integer part or fractional part must be present. The floating-point
number has the usual base-10 value.
Floating-point numbers are computed independently of any floating-point hardware in
the computer running the assembler.
DS52106A-page 38 2013 Microchip Technology Inc.

MPLAB XC16 Assembly Language
3.5.1.3 FIXED-POINT NUMBERS

A fixed-point number is represented in Q-15 format. This means that 15 bits are used
to represent the fractional portion of the number. The most significant bit is the sign bit,
followed by an implied binary point, and 15 bits of magnitude, for example:

The smallest number in this format is -1, represented by:
 0x8000 (1.000 0000 0000 0000)

the largest number is nearly 1 (.99996948), represented by:
 0x7FFF (0.111 1111 1111 1111)

A fixed-point number is written in the same format as a floating-point number, but its
value is constrained to be in the range [-1.0, 1.0).

3.5.2 Character Constants
There are two types of character constants. A character stands for one character in one
byte and its value may be used in numeric expressions. A string potentially can contain
many bytes, and its value may not be used in arithmetic expressions.

3.5.2.1 CHARACTERS

A single character may be written as a single quote immediately followed by that char-
acter, or as a single quote immediately followed by that character and another single
quote. As an example, either ‘a or ‘a’.
The assembler accepts escape characters to represent special control characters. As
an example, ‘\n’ represents a new-line character. All accepted escape characters are
listed in the table below.

The value of a character constant in a numeric expression is the machine’s byte-wide
code for that character. The assembler assumes your character code is ASCII.

bit no. 15 . 14 13 12 ... 1 0
value ±20 . 2-1 2-2 2-3 ... 2-14 2-15

TABLE 3-2: ESCAPE CHARACTERS

Escape Character Description Hex
Value

\a Bell (alert) character 07

\b Backspace character 08

\f Form-feed character 0C

\n New-line character 0A

\r Carriage return character 0D

\t Horizontal tab character 09

\v Vertical tab character 0B

\\ Backslash 5C

\? Question mark character 3F

\" Double quote character 22

\digit digit
digit

Octal character code. The numeric code is 3 octal digits.

\x hex-digits Hex character code. All trailing hex digits are combined.
Either upper or lower case x works.
 2013 Microchip Technology Inc. DS52106A-page 39

16-Bit Assembler, Linker and Utilities User’s Guide
3.6 SYMBOLS
A symbol is one or more characters chosen from the set composed of all letters, digits,
the underline character (_), and the period (.). Symbols may not begin with a digit. The
case of letters is significant (e.g., foo is a different symbol than Foo). There is no length
limit and all characters are significant.
Each symbol has exactly one name. Each name in an assembly language program
refers to exactly one symbol. You may use that symbol name any number of times in a
program.
• Reserved Names
• Local Symbols
• Giving Symbols Other Values
• The Special DOT Symbol
• Using Executable Symbols in a Data Context
• Predefined Symbols

3.6.1 Reserved Names
The following symbol names (case-insensitive) are reserved for the assembler.
Do not use .equ, .equiv or .set (See Chapter 4. “Assembler Directives”) with
these symbols.

3.6.2 Local Symbols
Local symbols are used when temporary scope for a label is needed. There are ten
local symbol names, which can be reused throughout the program. They may be
referred to by using the names ‘0’, ‘1’, ..., ‘9’. To define a local symbol, write a label of
the form ‘N:’ (where N represents any digit 0-9). To refer to the most recent previous
definition of that symbol, write ‘Nb’, using the same digit as when you defined the label.
To refer to the next definition of a local label, write ‘Nf’. The ‘b’ stands for “backwards”
and the ‘f’ stands for “forwards”. There is no restriction on how to use these labels; how-
ever, at any point in assembly, no more than 10 backward local labels and10 forward
local labels may be referred to.

EXAMPLE 3-1:

print_string:
 mov w0,w1
1:
 cp0.b [w1]
 bra z,9f
 mov.b [w1++],w0
 call print_char
 bra 1b
9:
 return

TABLE 3-3: SYMBOL NAMES – RESERVED
W0 W1 W2 W3 W4 W5 W6 W7
W8 W9 W10 W11 W12 W13 W14 W15

WREG A B OV C Z N GE
LT GT LE NOV NC NZ NN GEU

LTU GTU LEU OA OB SA SB
DS52106A-page 40 2013 Microchip Technology Inc.

MPLAB XC16 Assembly Language
Local symbol names are only a notation device. They are immediately transformed into
more conventional symbol names before the assembler uses them. The symbol names
stored in the symbol table, appearing in error messages, and optionally emitted to the
object file have the following parts:

EXAMPLE 3-2:

00000100 <print_string>:
 100: 80 00 78 mov.w w0, w1

00000102 <L1·1>:
 102: 11 04 e0 cp0.b [w1]
 104: 03 00 32 bra Z, . + 0x8
 106: 31 40 78 mov.b [w1++], w0
 108: 02 00 07 rcall . + 0x6
 10a: fb ff 37 bra . + 0xFFFFFFF8

0000010c <L9·1>:
 10c: 00 00 06 return

3.6.3 Giving Symbols Other Values
A symbol can be given an arbitrary value by writing a symbol, followed by an equals
sign ‘=’, followed by an expression. This is equivalent to using the .set directive (see
Chapter 4. “Assembler Directives”).

EXAMPLE 3-3:

PSV = 4

3.6.4 The Special DOT Symbol
The special symbol ‘.’ refers to the current address that is being assembled into. Thus,
the expression:
melvin: .word . ; in a data section

defines melvin to contain its own data address. Assigning a value to . is treated the
same as a .org directive. Thus the expression:
. = .+2

is the same as saying:
.org .+2

The symbol ‘$’ is accepted as a synonym for ‘.’.
When used in an executable section, ‘.’ refers to a PC address. On the 16-bit device,
the PC increments by 2 for each instruction word. Odd values are not permitted.

TABLE 3-4: SYMBOL PARTS
Parts Description

L All local labels begin with ‘L’.
Digit If the label is written ‘0:’, then the digit is ‘0’. If the label is written ‘1’,

then the digit is ‘1’. And so on up through ‘9’.
CTRL-A This unusual character is included so you do not accidentally invent a

symbol of the same name. The character has ASCII value ‘\001’.
Ordinal number This is a serial number to keep the labels distinct. The first ‘0:’ gets the

number ‘1’; the 15th ‘0:’ gets the number ‘15’; and so on. Likewise for
the other labels ‘1:’ through ‘9:’. For instance, the first ‘1:’ is named
L1C-A1, the 44th ‘3:’ is named L3C-A44.
 2013 Microchip Technology Inc. DS52106A-page 41

16-Bit Assembler, Linker and Utilities User’s Guide
3.6.5 Using Executable Symbols in a Data Context
The 16-bit device modified-Harvard architecture includes separate address spaces for
data storage and program storage. Most instructions and assembler directives imply a
context which is compatible with symbols from one address space or the other. For
example, the CALL instruction implies an executable context, so the assembler reports
an error if a program tries to CALL a symbol located in a data section.
Likewise, instructions and directives that imply a data context cannot be used with sym-
bols located in an executable section. Assembling the following code sequence will
result in an error, as shown:
 .text
msg: .asciz "Here is an important message"
 mov #msg,w0
:
:
Assembler messages:
Error: Cannot reference executable symbol (msg) in a data context

In this example the mov instruction implies a data context. Because symbol msg is
located in an executable section, an error is reported. Possibly the programmer was
trying to derive a pointer for use with the PSV window. The special operators described
in Section 4.5 “Special Operators” can be used whenever an executable symbol
must be referenced in a data context:
 .text
msg: .asciz "Here is an important message"
 mov #psvoffset(msg),w0

Here the psvoffset() operator derives a 16-bit value which is suitable for use in a
data context.
The next example shows how the special symbol “.” can be used with a data directive
in an executable section:
 .text
fred: .long paddr(.)

Here the paddr() operator derives a 24-bit value which is suitable for use in a data
context. The .long directive pads the value to 32 bits and encodes it into the .text
section.

3.6.6 Predefined Symbols
The assembler predefines several symbols which can be tested by conditional
directives in source code.

TABLE 3-5: PREDEFINED SYMBOLS
Symbol Definition

Device Family Symbols
__C30COFF 16-bit compiler COFF output
__C30ELF 16-bit compiler ELF output
__dsPIC30F dsPIC30F target device family
__dsPIC33F dsPIC33F target device family
__dsPIC33E dsPIC33EP target device family
__PIC24F PIC24FJ target device family
__PIC24FK PIC24FK target device family
__PIC24H PIC24H target device family
DS52106A-page 42 2013 Microchip Technology Inc.

MPLAB XC16 Assembly Language
3.7 EXPRESSIONS
An expression specifies an address or numeric value. White space may precede and/or
follow an expression. The result of an expression must be an absolute number or an
offset into a particular section. When an expression is not absolute and does not pro-
vide enough information for the assembler to know its section, the assembler termi-
nates and generates an error message.

3.7.1 Empty Expressions
An empty expression has no value: it is just white space or null. Wherever an absolute
expression is required, you may omit the expression, and the assembler assumes a
value of (absolute) 0.

3.7.2 Integer Expressions
An integer expression is one or more arguments delimited by operators. Arguments are
symbols, numbers or subexpressions. Subexpressions are a left parenthesis ‘(’ fol-
lowed by an integer expression, followed by a right parenthesis ‘)’; or a prefix operator
followed by an argument.
Integer expressions involving symbols in program memory are evaluated in Program
Counter (PC) units. On the 16-bit device, the PC increments by 2 for each instruction
word.

EXAMPLE 3-4: BRANCH AFTER A LABEL

Branch to the next instruction after label L by specifying L+2 as the destination.
bra L+2

__PIC24E PIC24EP target device family
__MCHP16 No target device family specified
Feature Symbols
__HAS_DSP Device has a DSP engine
__HAS_EEDATA Device has EEDATA memory
__HAS_DMA Device has DMA memory
__HAS_DMAV2 Device has DMA v2 support
__HAS_CODEGUARD Device has Codeguard™ Security
__HAS_PMP Device has Parallel Master Port (PMP)
__HAS_PMPV2 Device has PMP v2 support
__HAS_PMP_ENHANCED Device has Enhanced PMP
__HAS_EDS Device has EDS
__HAS_5VOLTS Device is a 5-volt device

TABLE 3-5: PREDEFINED SYMBOLS (CONTINUED)
Symbol Definition
 2013 Microchip Technology Inc. DS52106A-page 43

16-Bit Assembler, Linker and Utilities User’s Guide
3.8 OPERATORS
Operators are arithmetic functions, like + or %. Prefix operators are followed by an
argument. Infix operators appear between their arguments. Operators may be pre-
ceded and/or followed by white space.
Prefix operators have higher precedence than infix operators. Infix operators have an
order of precedence dependent on their type.

3.8.1 Prefix Operators
The assembler has the following prefix operators. Each takes one argument, which
must be absolute.

3.8.2 Infix Operators
Infix operators take two arguments, one on either side. Operators have a precedence,
by type, as shown in the table below; but, operations with equal precedence are per-
formed left to right. Apart from + or –, both operators must be absolute, and the result
is absolute.

TABLE 3-6: PREFIX OPERATORS
Operator Description Example

- Negation. Two’s complement negation. -1

~ Bit-wise not. One’s complement. ~flags

TABLE 3-7: INFIX OPERATORS
Operator Description Example

Arithmetic
* Multiplication 5 * 4 (=20)

/ Division. Truncation is the same as the C operator ‘/’. 23 / 4 (=5)

% Remainder 30 % 4 (=2)

<< Shift Left. Same as the C operator ‘<<’ 2 << 1 (=4)

>> Shift Right. Same as the C operator ‘>>’ 2 >> 1 (=1)

Bit-Wise
& Bit-wise And 4 & 6 (=4)

^ Bit-wise Exclusive Or 4 ^ 6 (=2)

! Bit-wise Or Not 0x1010 ! 0x5050
(=0xBFBF)

| Bit-wise Inclusive Or 2 | 4 (=6)

Simple Arithmetic
+ Addition. If either argument is absolute, the result has the

section of the other argument. You may not add together
arguments from different sections.

4 + 10 (=14)

- Subtraction. If the right argument is absolute, the result
has the section of the left argument. If both arguments
are in the same section, the result is absolute. You may
not subtract arguments from different sections.

14 - 4 (=10)
DS52106A-page 44 2013 Microchip Technology Inc.

MPLAB XC16 Assembly Language
3.9 SPECIAL OPERATORS
The assembler provides a set of special operators for each of the following actions:
• Accessing Data in Program Memory
• Obtaining a Program Address of a Symbol or Constant
• Obtaining a Handle to a Program Address
• Obtaining the DMA Offset of a Symbol – PIC24H/dsPIC33F Devices Only
• Obtaining the Size of a Specific Section
• Obtaining the Starting Address of a Specific Section
• Accessing Functions in Boot or Secure Segments

Relational
== Equal to .if (x == y)

!= Not equal to (also <>) .if (x != y)

< Less than .if (x < 5)

<= Less than or equal to .if (y <= 0)

> Greater than .if (x > a)

>= Greater than or equal to .if (x >= b)

Logical
&& Logical AND .if ((x > 1)

&& (x < 10))

|| Logical OR .if ((y != x)
|| (y < 100))

TABLE 3-7: INFIX OPERATORS (CONTINUED)
Operator Description Example

TABLE 3-8: SPECIAL OPERATORS
Operators Description Support

tblpage(name) Get page for table read/write operations All
tbloffset(name) Get pointer for table read/write operations All
psvpage(name) Get page for PSV data window operations All
psvoffset(name) Get pointer for PSV data window operations All
paddr(label) Get 24-bit address of label in program memory All
handle(label) Get 16-bit reference to label in program memory All
dmapage(name) Get page suitable for DMA controller 24E/33E
dmaoffset(name) Get offset of a symbol within DMA memory 24H/33F
.sizeof.(name) Get size of section name in address units All
.startof.(name) Get starting address of section name All
boot(num) Get address of access slot num in the boot segment. All
secure(num) Get address of access slot num in the secure seg-

ment.
All

edspage(name) Get page for EDS data window operations All
edsoffset(name) Get pointer for EDS data window operations All
All = Support for all devices
24H = Support for PIC24H MCUs; 24E = Support for PI24EP MCUs
33F = Support for dsPIC33F DSCs; 33E = Support for dsPIC33EP DSCs

DD
 2013 Microchip Technology Inc. DS52106A-page 45

16-Bit Assembler, Linker and Utilities User’s Guide
3.9.1 Accessing Data in Program Memory
The 16-bit device modified-Harvard architecture is comprised of two separate address
spaces: one for data storage and one for program storage. Data memory is 16 bits wide
and is accessed with a 16-bit address; program memory is 24 bits wide and is accessed
with a 24-bit address.
Normally, 16-bit instructions can read or write data values only from data memory, while
program memory is reserved for instruction storage. This arrangement allows for very
fast execution, since the two memory buses can work simultaneously and indepen-
dently of each other. In other words, a 16-bit instruction can read, modify and write a
location in data memory at the same time the next instruction is being fetched from pro-
gram memory.
Occasionally, circumstances may arise when the programmer or application designer
is willing to sacrifice some execution speed in return for the ability to read constant data
directly from program memory. For example, certain DSP algorithms require large
tables of coefficients that would otherwise consume the data memory needed to buffer
real-time data. To accommodate these needs, the 16-bit device modified-Harvard
architecture permits instructions to access data stored in program memory.
There are three methods available for accessing data in program memory:
• Table Read/Write Instructions
• PSV Data Window
• EDS Data Window
In any case, the programmer must compensate for the different address width between
data memory and program memory. For example, a pointer is commonly used to
access constant data tables, yet pointers for table read/write instructions can specify
an address of only 16 bits. A pointer used to access the PSV data window can specify
only 15 bits – the most significant bit must be set for an address in the data window
range (0x8000 to 0xFFFF).
As explained in the “16-bit MCU and DSC Programmer’s Reference Manual”
(DS70157), SFRs can be used to specify the full flash address. For a PSV address, use
PSVPAG (or DSRPAG for devices with EDS). For a table read/write address, use
TBLPAG. For an EDS address, use DSRPAG.

3.9.1.1 TABLE READ/WRITE INSTRUCTIONS

The tblpage() and tbloffset() operators provided by the assembler can be used
with table read/write instructions. These operators may be applied to any symbol (usu-
ally representing a table of constant data) in program memory.
Suppose a table of constant data is declared in program memory like this:
 .text
fib_data:
 .word 0, 1, 2, 3, 5, 8, 13

To access this table with table read/write instructions, use the tblpage() and
tbloffset() operators as follows:
; Set TBLPAG to the page that contains the fib_data array.

mov #tblpage(fib_data), w0
mov w0, _TBLPAG

; Make a pointer to fib_data for table instructions
mov #tbloffset(fib_data), w0

; Load the first data value
tblrdl [w0++], w1
DS52106A-page 46 2013 Microchip Technology Inc.

MPLAB XC16 Assembly Language
The programmer must ensure that the constant data table does not exceed the pro-
gram memory page size that is implied by the TBLPAG register. The maximum table
size implied by the TBLPAG register is 64 Kbytes. If additional constant data storage is
required, simply create additional tables each with its own symbol, and repeat the code
sequence above to load the TBLPAG register and derive a pointer.

3.9.1.2 PSV DATA WINDOW

The psvpage() and psvoffset() operators can be used with the PSV data window.
These operators may be applied to any symbol (usually representing a table of con-
stant data) in program memory.
Suppose a table of constant data is declared in program memory like this:
 .section *,psv
fib_data:
 .word 0, 1, 2, 3, 5, 8, 13

To access this table through the PSV data window, use the psvpage() and
psvoffset() operators as follows:
; Enable Program Space Visibility (Note 1)

bset.b CORCONL, #PSV

; Set PSVPAG (Note 2) to the page that contains the fib_data array.
mov #psvpage(fib_data), w0
mov w0, _PSVPAG

; Make a pointer to fib_data in the PSV data window
mov #psvoffset(fib_data), w0

; Load the first data value
mov [w0++], w1

The programmer must ensure that the constant data table does not exceed the pro-
gram memory page size that is implied by the PSVPAG register (or the DSRPAG reg-
ister for devices with EDS). The maximum table size implied by the PSVPAG or
DSRPAG register is 32 Kbytes. If additional constant data storage is required, simply
create additional tables each with its own symbol, and repeat the code sequence above
to load the PSVPAG or DSRPAG register and derive a pointer.

3.9.1.3 EDS DATA WINDOW

The edspage() and edsoffset() operators can be used with the EDS data window.
The EDS data window replaces the PSV data window in certain device families.
However, these operators are supported on all devices.
The edspage() operator may be applied to any symbol in any on-chip memory space.
The operator returns a 10-bit page value. Unlike psvpage(), a value of zero is never
returned.
The edsoffset() operator may be applied to any symbol in any on-chip memory
space. The operator returns a 16-bit data space pointer. Unlike psvoffset(), the
value of this pointer may fall anywhere in the data address space (0x0 to 0xFFFF).

Note 1: Some devices do not need PSV to be enabled. Please check the data
sheet for your device.

2: For devices with EDS, use DSRPAG. Please check the data sheet for your
device.
 2013 Microchip Technology Inc. DS52106A-page 47

16-Bit Assembler, Linker and Utilities User’s Guide
Suppose that a table of data is located in any on-chip memory space. To access this
table through the EDS data window, use the edspage() and edsoffset() operators
as follows:
; set DSRPAG to the page that contains the glob_data array
 mov #edspage(glob_data),w0
 mov w0, _DSRPAG
; make a pointer to glob_data
 mov #edsoffset(glob_data),w0
; Load the first data value
 mov [w0++], w1

In order to access multiple items from a data table, you must ensure that the table does
not cross a page boundary. To prevent this, specify the page section directive when the
data table is defined. If additional constant storage is required, simply create additional
tables, each with its own symbol, and repeat the code sequence in Section 3.9.1.3 to
load the DSRPAG register and derive a pointer.

3.9.2 Obtaining a Program Address of a Symbol or Constant
The paddr() operator can be used to obtain the program address of a constant or
symbol. For example, if you wanted to set up an interrupt vector table without using the
default naming conventions, you could use the paddr() operator.
.section ivt, code
 goto reset
.pword paddr(iv1)
.pword paddr(iv2)
...

3.9.3 Obtaining a Handle to a Program Address
The handle() operator can be used to obtain the 16-bit reference to a label in pro-
gram memory. If the final resolved PC address of the label fits in 16 bits, that value is
returned by the handle() operator. If the final resolved address exceeds 16 bits, the
address of a jump table entry is returned instead. The jump table entry is a GOTO
instruction containing a 24-bit absolute address. The handle jump table is created by
the linker and is always located in low program memory. Handles permit any location
in program memory to be reached via a 16-bit address and are provided to facilitate the
use of C function pointers.
The handle jump table is created by the linker and contains an entry for each unique
label that is used with the handle() operator.

3.9.4 Obtaining the DMA Offset of a Symbol – PIC24H/dsPIC33F
Devices Only

The dmaoffset() operator can be used to obtain the offset of a symbol within DMA
memory. For example, to declare a buffer in DMA memory, and load its offset into a reg-
ister, you could use:
.section *,bss,dma
buf: .space 256

.text
mov #dmaoffset(buf), W0

To construct a table of DMA offsets for several symbols, you could use:
.word dmaoffset(buf1)
.word dmaoffset(buf2)
.word dmaoffset(buf3)
...

DD
DS52106A-page 48 2013 Microchip Technology Inc.

MPLAB XC16 Assembly Language
3.9.5 Obtaining the DMA Offset of a Symbol – PIC24EP/dsPIC33EP
Devices Only

The dmaoffset() and dmapage() operators can be used to obtain the offset of a
symbol within DMA memory.
.word dmaoffset(buf1), dmapage(buf1)
.word dmaoffset(buf2), dmapage(buf2)
.word dmaoffset(buf3), dmapage(buf3)
...

3.9.6 Obtaining the Size of a Specific Section
The .sizeof.(section_name) operator can be used to obtain the size of a specific
section after the link process has occurred. For example, to find the final size of the
.data section, use:
mov #.sizeof.(.data), w0

3.9.7 Obtaining the Starting Address of a Specific Section
The .startof.(section_name) operator can be used to obtain the starting
address of a specific section after the link process has occurred. For example, to obtain
the starting address of the .data section, use:
mov #.startof.(.data), w1

3.9.8 Accessing Functions in Boot or Secure Segments
Functions in the boot or secure segments without access entries can be referenced like
any other function:
call func1 ; call func1
mov #handle(func1),w1 ; create 16 bit pointer to func1 (instr)
.word handle(func1) ; create 16 bit pointer to func1 (data)
.pword func1 ; create 24 bit pointer to func1

In order to support the separate linking of boot and secure application segments,
access entry points may be defined. Access entry points provide a way to transfer con-
trol across segments to a function that may not be defined at link time. For more infor-
mation about access entry points, see Section 4.6 “Directives that Define Symbols”
and Section 10.14 “Boot and Secure Segments”.
The boot() and secure() operators can be used to reference boot or secure func-
tions via access entry points. These operators can be applied in both instructions and
data directives, and will return 16, 24, or 32 bits, depending on the context.
call boot(4) ; call access entry 4 in the boot segment
rcall secure(4) ; pc-relative call to secure access entry 4
mov #boot(4),w1 ; load 16 bit pointer to boot entry 4
.word secure(5) ; create 16 bit pointer to secure entry 5
.pword secure(5) ; create 24 bit pointer to secure entry 5
.long boot(6) ; create 32 bit pointer to boot entry 6
goto boot(7) ; jump to boot entry 7
bra secure(7) ; unconditional branch to secure entry 7
bra cc, boot(8) ; conditional branch to boot entry 8

DD

Note: When the .sizeof.(section_name) operator is used on a section in
program memory, the size returned is the size in PC units. The 16-bit device
PC increments by 2 for each instruction word.
 2013 Microchip Technology Inc. DS52106A-page 49

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 50 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 4. Assembler Directives
4.1 INTRODUCTION
Directives are assembler commands that appear in the source code but are not usually
translated directly into opcodes. They are used to control the assembler: its input,
output, and data allocation. All 16-bit directives are preceded by a dot ‘.’.

Topics covered in this chapter are:
• Directives that Define Sections
• Directives that Fill Program Memory
• Directives that Initialize Constants
• Directives that Declare Symbols
• Directives that Define Symbols
• Directives that Modify Section Alignment
• Directives that Format the Output Listing
• Directives that Control Conditional Assembly
• Directives for Substitution/Expansion
• Miscellaneous Directives
• Directives for Debug Information

Note 1: Directives are not instructions (i.e., movlw, btfss, goto, etc.). For
instruction set information, consult your device data sheet.

2: Directives that are supported, but deprecated, are listed in
Appendix A. “Deprecated Features”.
 2013 Microchip Technology Inc. DS52106A-page 51

16-Bit Assembler, Linker and Utilities User’s Guide
4.2 DIRECTIVES THAT DEFINE SECTIONS
Sections are locatable blocks of code or data that will occupy contiguous locations in
the 16-bit device memory. Three sections are pre-defined: .text for executable code,
.data for initialized data, and .bss for uninitialized data. Other sections may be
defined; the linker defines several that are useful for locating data in specific areas of
16-bit memory.
Section directives are:
.bss

.data

.memory name, size(nn) [, origin(aa)]

.pushsection name [, attr1[,...,attrn]]

.popsection

.section name [, “flags”] (deprecated)

.section name [, attr1[,...,attrn]]

.text

.bss

Definition
Assemble the following statements onto the end of the .bss (uninitialized data) section.
Example
 ; The following symbols (B1 and B2) will be placed in
 ; the uninitialized data section.
.bss
B1: .space 4 ; 4 bytes reserved for B1
B2: .space 1 ; 1 byte reserved for B2

.data

Definition
Assemble the following statements onto the end of the .data (initialized data) section.
Example
 ; The following symbols (D1 and D2) will be placed in
 ; the initialized data section.
.data
D1: .long 0x12345678 ; 4 bytes
D2: .byte 0xFF ; 1 byte

The linker collects initial values for section .data (and other sections defined with the
data attribute) and creates a data initialization template. This template can be
processed during application start-up to transfer initial values into memory. For C
applications, a library function is called for this purpose automatically. Assembly proj-
ects can utilize this library by linking with the libpic30 library. For more information,
see the discussion of Run-Time Library Support in Section 10.8 “Initialized Data”.
DS52106A-page 52 2013 Microchip Technology Inc.

Assembler Directives
.memory name, size(nn) [, origin(aa)]

Definition
Define an external memory region for allocation by the linker. Sections may be
assigned to region name by use of the memory section attribute.
Example
 ; define an external memory region
 .memory _memory1, size(8192), origin(0)

 ; allocate a section in external memory
 .section mem1_sec1,memory(_memory1)
 .global _mem1_array1
_mem1_array1:
 .skip 50

.pushsection name [, attr1[,...,attrn]]

Push the current section description onto the section stack, and assemble the following
code into a section named name. The syntax is identical to .section. Every
.pushsection should have a matching .popsection.

.popsection

Replace the current section description with the top section on the section stack. This
section is popped off the stack.

.section name [, “flags”] (deprecated)

.section name [, attr1[,...,attrn]]

Assemble the following code into a section named name. If the character * is specified
for name, the assembler will generate a unique name for the section based on the input
file name in the format filename.scnn, where n represents the number of
auto-generated section names.
Sections named * can be used to conserve memory because the assembler will not
add alignment padding to these sections. Sections that are not named * may be com-
bined across several files, so the assembler must add padding in order to guarantee
the requested alignment.
If the optional argument is not present, the section attributes depend on the section
name. A table of reserved section names with implied attributes is given in Reserved
Section Names with Implied Attributes. If the section name matches a reserved name,
the implied attributes will be assigned to that section. If the section name is not recog-
nized as a reserved name, the default attribute will be data (initialized storage in data
memory).
Implied attributes for reserved section names other than [.text, .data, .bss] are dep-
recated. A warning will be issued if implied attributes for these reserved section are
used.
 2013 Microchip Technology Inc. DS52106A-page 53

16-Bit Assembler, Linker and Utilities User’s Guide
If the first optional argument is quoted, it is taken as one or more flags that describe the
section attributes. Quoted section flags are deprecated. (See Appendix
A. “Deprecated Features”). A warning will be issued if quoted section flags are used.
If the first optional argument is not quoted, it is taken as the first element of an attribute
list. Attributes may be specified in any order, and are case-insensitive. Two categories
of section attributes exist: attributes that represent section types, and attributes that
modify section types.
DS52106A-page 54 2013 Microchip Technology Inc.

Assembler Directives
Attributes that Represent Section Types
Attributes that represent section types are mutually exclusive. At most, one of the
attributes listed below may be specified for a given section.

TABLE 4-1: ATTRIBUTES THAT REPRESENT SECTION TYPES
Attribute Description Support

auxflash Executable code in auxiliary program memory 24E/33E (some)
auxpsv Constant is in auxilliary program memory 24E/33E (some)
bss Uninitialized storage in data memory All
code Executable code in program memory All
data Initialized storage in data memory All
eedata Non-volatile storage in data EEPROM 30/24FK
heap Memory for dynamic allocation in C All
memory External or user-defined memory All
persist Persistent storage in data memory All
psv Constants in program memory All
stack Processor stack All
All = Supported on all devices
24E = Supported on (some) PIC24EP MCUs
24FK = Supported on PIC24FK MCUs
30 = Supported on dsPIC30F DSCs
33E = Supported on (some) dsPIC33EP DSCs

DD
 2013 Microchip Technology Inc. DS52106A-page 55

M
PLA

B
® XC

16 A
ssem

bler, Linker and U
tilities U

ser’s

D
S

52106A
-page 56

 2013 M
icrochip Technology Inc.

memory persist psv stack

All All All All
— All — —
— 30/33 — —
— 30/33 — —
All All All —
All All All All
All All All —
— — All —
— — — —
— 24H/33 — —
— — CG —
— — CG —
— All — —
— All All —

ull-terminated strings of variable length.
Attributes that Modify Section Types
Depending on the attribute, all or some section types may be modified by it, as below.

TABLE 4-2: ATTRIBUTES THAT MODIFY SECTION TYPES

Attribute Description
Attribute applies to

auxflash bss code data eedata heap

address(a) locate at absolute address a 24E/33E All All All 30 All
near locate in the first 8K of memory — All — All — —
xmemory locate in X address space — 30/33 — 30/33 — 30/33
ymemory locate in Y address space — 30/33 — 30/33 — 30/33
reverse(n) align the ending address +1 24E/33E All — All 30 —
align(n) align the starting address 24E/33E All All All 30 All
noload allocate, do not load 24E/33E All All All 30 —
merge(n) mergable elements of size n** 24E/33E — All All 30 —
info do not allocate or load 24E/33E All All All — —
dma locate in DMA space — 24H/33 — 24H/33 — —
boot locate in boot segment — CG CG — CG —
secure locate in secure segment — CG CG — CG —
eds locate in extended data space — All — All — —
page do not cross page boundary 24E/33E All All All — —
All = Attribute applies to section – All devices
24E = Attribute applies to section – PIC24EP MCUs
24H = Attribute applies to section – PIC24H MCUs
30 = Attribute applies to section – dsPIC30F DSCs
33 = Attribute applies to section – dsPIC33F DSCs
33E = Attribute applies to section – dsPIC33EP DSCs
CG = Attribute applies to section – CodeGuard™ Security-enabled devices
— = Attribute does not apply to section
** = This attribute could be used by a linker to merge identical constants across input files. If n=0, the section contains n

DD

A
ssem

bler D
irectives

 2013 M

icrochip Technology Inc.

D
S

52106A
-page 57

a valid attribute string,

TA
boot secure eds page

ad CG CG All All
ne — — — —
xm — — All All
ym — — All All
re CG CG All All
al CG CG All All
no CG CG All All
m — — All All
in — — — —
dm — — 24H/33 24H/33
bo — CG CG
se — CG CG
ed CG CG All
pa CG CG All
A
24
30
33
C
—

Attributes that modify section types may be used in combination. For example, “xmemory,address(a)” is
but “xmemory,address(a),ymemory” is not.

BLE 4-3: COMBINING ATTRIBUTES THAT MODIFY SECTION TYPES
address near xmemory ymemory reverse align noload merge info dma

dress All 30/33 30/33 — — All — — 24H/33
ar All 30/33 30/33 All All All All — —
emory 30/33 30/33 — 30/33 30/33 30/33 30/33 — —
emory 30/33 30/33 — 30/33 30/33 30/33 30/33 — —

verse — All 30/33 30/33 — All All — 24H/33
ign — All 30/33 30/33 — All All — 24H/33
load All All 30/33 30/33 All All — — 24H/33

erge — All 30/33 30/33 All All — — —
fo — — — — — — — — —

a 24H/33 — — — 24H/33 24H/33 24H/33 — —
ot CG — — — CG CG CG — — —
cure CG — — — CG CG CG — — —
s All — 30/33 30/33 All All All All — 24H/33
ge All — 30/33 30/33 All All All All — 24H/33

ll = May be combined – All devices
H = Supported on PIC24H MCUs
 = Supported on dsPIC30F DSCs
 = Supported on dsPIC33F DSCs

G = Supported on CodeGuard™ Security-enabled devices
 = May not be combined

16-Bit Assembler, Linker and Utilities User’s Guide
Reserved Section Names with Implied Attributes
The following section names are available for user applications and are recognized to
have implied attributes:

Reserved section names may be used with explicit attributes. If the explicit attribute(s)
conflict with any implied attribute(s), an error will be reported.
Implied attributes for reserved section names other than [.text, .data, .bss] are
deprecated. A warning will be issued if these names are used without explicit attributes.

Section Directive Examples
.section foo ;foo is initialized data memory.

.section bar,bss,xmemory,align(256) ;bar is uninitialized
 ;X data memory, aligned.
.section *,data,near ;section is near
 ;initialized data memory.
.section buf1,bss,address(0x800) ;buf1 is uninitialized
 ;data memory at 0x800.
.section tab1,psv,address(0x10000) ;tab1 is psv constants
 ;at 0x10000.

Section Directive Examples - Boot/Secure Segments
Program Memory
Attributes can be used to declare protected functions in secure segments:
 .section *,code,boot
 .global func1
func1:
 return

 .section *,code,secure
 .global func2
func2:
 return

Reserved Name Implied Attribute(s) Support

.text code All

.data data All

.bss bss All

.xbss bss, xmemory 30/33

.xdata data, xmemory 30/33

.nbss bss, near All

.ndata data, near All

.ndconst data, near All

.pbss bss, persist All

.dconst data All

.ybss bss, ymemory 30/33

.ydata data, ymemory 30/33

.const psv All

.eedata eedata 30
All = Supported on all devices
30 = Supported on dsPIC30F DSCs
33 = Supported on dsPIC33F DSCs

DD
DS52106A-page 58 2013 Microchip Technology Inc.

Assembler Directives
A secure function is defined by the combination of .section and .global directives,
and a label. It is recommended that each secure function be defined in a separate sec-
tion. If the function will be assigned an access entry point, separate sections are
required.
An optional argument to boot or secure can be used to specify a protected access
entry point:
 .section *,code,boot(3)
 .global func3
func3:
 return

 .section *,code,secure(4)
 .global func4
func4:
 return

The optional argument is valid only in code sections. Integers that represent access
entry slots must be in the range 0..15 or 17..31. In addition to an entry slot number, the
value unused may be used to specify an entry for all unused slots in the access entry
area:
 .section *,code,boot(unused)
 .global func_default
func_default:
 return

An interrupt service routine may be specified with the value isr:
 .section *,code,boot(isr)
 .global func_isr
func_default:
 retfie

A section identified with boot(isr) or secure(isr) will be assigned to access entry
slot 16, which is reserved for interrupt functions.
Data Memory
The boot and secure attributes can be used to define protected variables in boot RAM
or secure RAM:
 .section *,bss,boot
 .global boot_dat
boot_dat:
 .space 32

 .section *,bss,secure
 .global secure_dat
secure_dat:
 .space 32

There is no support for initialized data in protected RAM segments. Therefore boot or
secure cannot be used in combination with attribute data. A diagnostic will be reported
if initial values are specified in a section that has been designated boot or secure.
 2013 Microchip Technology Inc. DS52106A-page 59

16-Bit Assembler, Linker and Utilities User’s Guide
Constants in Non-Volatile Memory
Constants in non-volatile memory can be protected by using the boot or secure attri-
bute in combination with psv or eedata:
 .section *,psv,boot
 .global key1
key1:
 .ascii "abcdefg"
 .section *,eedata,boot
 .global key2
key2:
 .ascii "hijklm"

.text

Definition
Assemble the following statements onto the end of the .text (executable code) sec-
tion.
Example
 ; The following code will be placed in the executable
 ; code section.
.text
.global __reset
__reset:
 mov BAR, w1
 mov FOO, w0
LOOP:
 cp0.b [w0]
 bra Z, DONE
 mov.b [w0++], [w1++]
 bra LOOP
DONE:
 .end
DS52106A-page 60 2013 Microchip Technology Inc.

Assembler Directives
4.3 DIRECTIVES THAT FILL PROGRAM MEMORY
These directives are only allowed in a code (executable) section. If they are not in a
code section, a warning is generated and the rest of the line is ignored.
Fill directives are:
.fillupper [value]

.fillvalue [value]

.pfillvalue [value]

Section Example

.fillupper [value]

Definition
Define the upper byte (bits 16-23) to be used when this byte is skipped due to alignment
or data defining directives. If value is not specified, it is reset to the default 0x00. Direc-
tives that may cause an upper byte to be filled are: .align, .ascii, .asciz, .byte,
.double, .fill, .fixed, .float, .hword, .int, .long, .skip, .space, .string and
.word. The value is persistent for a given code section, throughout the entire source
file, and may be changed to another value by issuing subsequent
.fillupper directives.
Example
See the Section Example table that follows.

.fillvalue [value]

Definition
Define the byte value to be used as fill in a code section when the lower word (bits 0-15)
is skipped due to alignment or data defining directives. If value is not specified, the
default value of 0x0000 is used. Directives that may cause the lower word to filled are:
.align, .fill, .skip, .org and .space. The value is persistent for a given code sec-
tion, throughout the entire source file, and may be changed to another value by issuing
subsequent .fillvalue directives.
Example
See the Section Example table that follows.

.pfillvalue [value]

Definition
Define the byte value to be used as fill in a code section when memory (bits 0-23) is
skipped due to an alignment or data defining p directive. If value is not specified, it is
reset to its default 0x000000. Directives that may cause a program word to be filled are:
.palign, .pfill, .pskip, .porg, and .pspace. The value is persistent for a given
code section, throughout the entire source file, and may be changed to another value
by issuing subsequent .pfillvalue directives.
Example
See the Section Example table that follows.
 2013 Microchip Technology Inc. DS52106A-page 61

16-Bit Assembler, Linker and Utilities User’s Guide
Section Example

.section .myconst, code

.fillvalue 0x12

.fillupper 0x34

.pfillvalue 0x56

0x12 0x12 0x34 .fill 4

0x12 0x12

0x34 .align 2 ;Align to next p-word

0x56 0x56 0x56 .pfill 8

0x56 0x56 0x56

0x56 0x56

0x56 .palign 2 ;Align to next p-word

.fillvalue ;Reset fillvalue

.pfillvalue ;Reset pfillvalue

0x00 0x00 0x34 .fill 4

0x00 0x00

0x34 .align 2 ;Align to next p-word

0x00 0x00 0x00 .pfill 8

0x00 0x00 0x00

0x00 0x00

0x00 .palign 2 ;Align to next p-word
DS52106A-page 62 2013 Microchip Technology Inc.

Assembler Directives
4.4 DIRECTIVES THAT INITIALIZE CONSTANTS
Constant initialization directives are:
.ascii “string1” | <##>1 [, ..., “stringn” | <##>n]

.pascii “string1” | <##>1 [, ..., “stringn” | <##>n]

.pascii “string1”

.asciz “string1” | <##>1 [, ..., “stringn” | <##>n]

.pasciz “string1” | <##>1 [, ..., “stringn” | <##>n]

.pasciz “string2”

.byte expr1[, ..., exprn]

.pbyte expr1[, ..., exprn]

.double value1[, ..., valuen]

.fixed value1[, ..., valuen]

.float value1[, ..., valuen]

.single value1[, ..., valuen]

.hword expr1[, ..., exprn]

.int expr1[, ..., exprn]

.long expr1[, ..., exprn]

.short expr1[, ..., exprn]

.string “str”

.pstring “str”

.pstring “string2”

.word expr1[, ..., exprn]

.pword expr1[, ..., exprn]

.ascii “string1” | <##>1 [, ..., “stringn” | <##>n]

Assembles each string (with no automatic trailing zero byte) or <##> into successive
bytes in the current section.<##> is a way of specifying a character by its ASCII code.
For example, given that the ASCII code for a new line character is 0xa, the following
two lines are equivalent:
.ascii "hello\n","line 2\n"
.ascii "hello",<0xa>,"line 2",<0xa>

If in a code (executable) section, the upper program memory byte will be filled with the
last .fillupper value specified or the NOP opcode (0x00) if no .fillupper has been
specified.

Note: If the ## is not a number, 0 will be assembled. If the ## is greater than 255,
then the value will be truncated to a byte.
 2013 Microchip Technology Inc. DS52106A-page 63

16-Bit Assembler, Linker and Utilities User’s Guide
.pascii “string1” | <##>1 [, ..., “stringn” | <##>n]

Assembles each string (with no automatic trailing zero byte) or <##> into successive
bytes into program memory, including the upper byte.<##> is a way of specifying a
character by its ASCII code. For example, given that the ASCII code for a new line char-
acter is 0xa, the following two lines are equivalent:
.pascii "hello\n","line 2\n"
.pascii "hello",<0xa>,"line 2",<0xa>

.pascii “string1”

Stores a sequence of ASCII characters (with no automatic trailing zero byte) into
program memory, including the upper byte.

.asciz “string1” | <##>1 [, ..., “stringn” | <##>n]

Assembles each string with an automatic trailing zero byte or <##> into successive
bytes in the current section.

If in a code (executable) section, the upper program memory byte will be filled with the
last .fillupper value specified or the NOP opcode (0x00) if no .fillupper has been
specified.

.pasciz “string1” | <##>1 [, ..., “stringn” | <##>n]

Assembles each string with an automatic trailing zero byte or <##> into program mem-
ory, including the upper byte.

.pasciz “string2”

Stores a sequence of ASCII characters (with an automatic trailing zero byte) into
program memory, including the upper byte.

.byte expr1[, ..., exprn]

Assembles one or more successive bytes in the current section.
If in a code (executable) section, the upper program memory byte will be filled with the
last .fillupper value specified or the NOP opcode (0x00) if no .fillupper has been
specified.

Note: If the ## is not a number, 0 will be assembled. If the ## is greater than 255,
then the value will be truncated to a byte.

Note: If the ## is not a number, 0 will be assembled. If the ## is greater than 255,
then the value will be truncated to a byte.

Note: If the ## is not a number, 0 will be assembled. If the ## is greater than 255,
then the value will be truncated to a byte.
DS52106A-page 64 2013 Microchip Technology Inc.

Assembler Directives
.pbyte expr1[, ..., exprn]

Assembles one or more successive bytes in the current section. This directive will allow
you to create data in the upper byte of program memory.
This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

.double value1[, ..., valuen]

Assembles one or more double-precision (64-bit) floating-point constants into consec-
utive addresses in little-endian format.
If in a code (executable) section, the upper program memory byte will be filled with the
last .fillupper value specified or the NOP opcode (0x00) if no.fillupper has been
specified.
Floating point numbers are in IEEE format (see Section 3.3.1.2 “Floating-Point Num-
bers”).
The following statements are equivalent:
.double 12345.67
.double 1.234567e4
.double 1.234567e04
.double 1.234567e+04
.double 1.234567E4
.double 1.234567E04
.double 1.234567E+04

It is also possible to specify the hexadecimal encoding of a floating point constant. The
following statements are equivalent and encode the value 12345.67 as a 64-bit dou-
ble-precision number:
.double 0e:40C81CD5C28F5C29
.double 0f:40C81CD5C28F5C29
.double 0d:40C81CD5C28F5C29

.fixed value1[, ..., valuen]

Assembles one or more 2-byte fixed-point constants (range -1.0 <= f < 1.0) into con-
secutive addresses in little-endian format. Fixed-point numbers are in Q-15 format (see
Section 3.3.1.3 “Fixed-Point Numbers”).
 2013 Microchip Technology Inc. DS52106A-page 65

16-Bit Assembler, Linker and Utilities User’s Guide
.float value1[, ..., valuen]

Assembles one or more single-precision (32-bit) floating-point constants into consecu-
tive addresses in little-endian format.
If in a code (executable) section, the upper program memory byte will be filled with the
last .fillupper value specified or the NOP opcode (0x00) if no.fillupper has been
specified.
Floating point numbers are in IEEE format (see Section 3.3.1.2 “Floating-Point
Numbers”).
The following statements are equivalent:
.float 12345.67
.float 1.234567e4
.float 1.234567e04
.float 1.234567e+04
.float 1.234567E4
.float 1.234567E04
.float 1.234567E+04

It is also possible to specify the hexadecimal encoding of a floating-point constant. The
following statements are equivalent and encode the value 12345.67 as a 32-bit
double-precision number:
.float 0e:4640E6AE
.float 0f:4640E6AE
.float 0d:4640E6AE

.single value1[, ..., valuen]

Assembles one or more single-precision (32-bit), floating-point constants into
consecutive addresses in little-endian format.
If in a code (executable) section, the upper program memory byte will be filled with the
last .fillupper value specified or the NOP opcode (0x00) if no .fillupper has been
specified.
Floating point numbers are in IEEE format.

.hword expr1[, ..., exprn]

Assembles one or more 2-byte numbers into consecutive addresses in little-endian for-
mat.

.int expr1[, ..., exprn]

Assembles one or more 2-byte numbers into consecutive addresses in little-endian
format.

.long expr1[, ..., exprn]

Assembles one or more 4-byte numbers into consecutive addresses in little-endian
format.
DS52106A-page 66 2013 Microchip Technology Inc.

Assembler Directives
.short expr1[, ..., exprn]

Same as .word.

.string “str”

Same as .asciz.

.pstring “str”

Same as .pasciz.

.pstring “string2”

Same as .pasciz "string2".

.word expr1[, ..., exprn]

Assembles one or more 2-byte numbers into consecutive addresses in little-endian
format.

.pword expr1[, ..., exprn]

Assembles one or more 3-byte numbers into consecutive addresses in the current
section.
This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.
 2013 Microchip Technology Inc. DS52106A-page 67

16-Bit Assembler, Linker and Utilities User’s Guide
4.5 DIRECTIVES THAT DECLARE SYMBOLS
Declare symbol directives are:
.bss symbol, length [, algn]

.comm symbol, length [, algn]

.extern symbol

.global symbol .globl symbol

.lcomm symbol, length

.weak symbol

.bss symbol, length [, algn]

Reserve length (an absolute expression) bytes for a local symbol. The addresses are
allocated in the bss section, so that at run-time the bytes start off zeroed. symbol is
declared local so it is not visible to other objects. If algn is specified, it is the address
alignment required for symbol. The bss location counter is advanced until it is a multiple
of the requested alignment. The requested alignment must be a power of 2.

.comm symbol, length [, algn]

Declares a common symbol named symbol. When linking, a common symbol in one
object file may be merged with a defined or common symbol of the same name in
another object file. If the linker does not see a definition for that symbol, then it will allo-
cate length bytes of uninitialized memory. If the linker sees multiple common symbols
with the same name, and they do not all have the same size, the linker will allocate
space using the largest size.
If algn is specified, it is the address alignment required for symbol. The requested
alignment must be a power of two. algn is supported when the object file format is ELF;
otherwise, it is ignored.

.extern symbol

Declares a symbol name that may be used in the current module, but it is defined as
global in a different module.

.global symbol

.globl symbol

Declares a symbol symbol that is defined in the current module and is available to other
modules.

.lcomm symbol, length

Reserve length bytes for a local common denoted by symbol. The section and value
of symbol are those of the new local common. The addresses are allocated in the bss
section, so that at run-time, the bytes start off zeroed. symbol is not declared global so
it is normally not visible to the linker.
DS52106A-page 68 2013 Microchip Technology Inc.

Assembler Directives
.weak symbol

Marks the symbol named symbol as weak. When a weak-defined symbol is linked with
a normal-defined symbol, the normal-defined symbol is used with no error. When a
weak-undefined symbol is linked and the symbol is not defined, the value of the weak
symbol becomes zero with no error.
 2013 Microchip Technology Inc. DS52106A-page 69

16-Bit Assembler, Linker and Utilities User’s Guide
4.6 DIRECTIVES THAT DEFINE SYMBOLS
Define symbol directives are:
.equ symbol, expression

.equiv symbol, expression

.set symbol, expression

.equ symbol, expression

Set the value of symbol to expression. You may set a symbol any number of times in
assembly. If you set a global symbol, the value stored in the object file is the last value
equated to it.

.equiv symbol, expression

Like .equ, except the assembler will signal an error if symbol is already defined.

.set symbol, expression

Same as .equ.
DS52106A-page 70 2013 Microchip Technology Inc.

Assembler Directives
4.7 DIRECTIVES THAT MODIFY SECTION ALIGNMENT
There are two ways to modify section alignment: implicitly and explicitly. Implicit
alignment occurs first.
• Implicit Alignment in Program Memory
• Explicit Section Alignment Directives

4.7.1 Implicit Alignment in Program Memory
In addition to directives that explicitly align the location counter (such as .align,
.palign, .org, .porg, etc.), many statements cause an implicit alignment to occur
under certain conditions. Implicit alignment occurs when padding is inserted so that the
next statement begins at a valid address. Padding uses the current .fillvalue and
.fillupper values if specified; otherwise the value zero is used.
In data memory, a valid address is available for each byte. Since no data directives
specify memory in quantities of less than one byte, implicit alignment is not required in
data memory.
In program memory, a valid address is available for each instruction word (3 bytes).
Since data directives can specify individual bytes, implicit alignment to the next valid
address is sometimes required.
The following conditions cause implicit alignment in program memory:
1. Labels must be aligned to a valid address.

For example, the following source code:
 .text
 .pbyte 0x11
L1:
 .pbyte 0x22
 .pbyte 0x33,0x44

generates implicit alignment as shown:
Disassembly of section .text:
00000000 <.text>:
 0: 11 00 00 nop
00000002 <L1>:
 2: 22 33 44 .pword 0x443322

2. Instructions must be aligned to a valid address.
For example, the following source code:
.text
.pbyte 0x11
 mov w2,w3

generates implicit alignment as shown:
Disassembly of section .text:
00000000 <.text>:
 0: 11 00 00 nop
 2: 82 01 78 mov.w w2, w3

Note: Two bytes of padding were inserted so that label L1 would be aligned to a
valid address.

Note: Two bytes of padding were inserted so that the mov instruction would be
aligned to a valid address.
 2013 Microchip Technology Inc. DS52106A-page 71

16-Bit Assembler, Linker and Utilities User’s Guide
3. Transitions between p-type data directives (.pbyte, .pspace, etc). and normal
data directives (.byte, .space, etc.), in either direction, are aligned to a valid
address.
For example, the following source code:
.text
.byte 0x11
.pbyte 0x22
.pbyte 0x33,0x44

generates implicit alignment as shown:
Disassembly of section .text:
00000000 <.text>:
 0: 11 00 00 nop
 2: 22 33 44 .pword 0x443322

4.7.2 Explicit Section Alignment Directives
Directives that explicitly modify section alignment are:
.align algn[, fill[, max-skip]]

.palign algn[, fill[, max-skip]]

.fill repeat[, size[, fill]]

.pfill repeat[, size[, fill]]

.org new-lc[, fill]

.porg new-lc[, fill]

.skip size[, fill] .space size[, fill]

.pskip size[, fill] .pspace size[, fill]

.struct expression

.align algn[, fill[, max-skip]]

Pad the location counter (in the current subsection) to a particular storage boundary.
algn is the address alignment required. The location counter is advanced until it is a
multiple of the requested alignment. If the location counter is already a multiple of the
requested alignment, no change is needed or made. In a code section, an alignment of
2 is required to align to the next instruction word. The requested alignment must be a
power of 2.
fill is optional. If not specified:
• In a data section, a value of 0x00 is used to fill the skipped bytes.
• In a code section, the last specified .fillvalue is used to fill the lower two bytes

of program memory and the last specified .fillupper is used to fill the upper
program memory byte.

max-skip is optional. If specified, it is the maximum number of bytes that should be
skipped by this directive. If doing the alignment would require skipping more bytes than
the specified maximum, then the alignment is not done at all.

Note: Two bytes of padding were inserted so that the transition from normal to
p-type directive would be aligned to a valid address.
DS52106A-page 72 2013 Microchip Technology Inc.

Assembler Directives
Alignment within a section is required for modulo addressing. It is worth noting that the
overall section alignment reflects the greatest alignment of any .align directives that
are included. Further, the assembler must pad out the section length to match its align-
ment. This is done in order to preserve the requested alignment in case the section is
combined with other sections of the same name during the link. To avoid unnecessary
padding of aligned sections, use the section name *, which identifies a unique section
that will never be combined.

.palign algn[, fill[, max-skip]]

Pad the location counter (in the current subsection) to a particular storage boundary.
This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.
algn is the address alignment required. The location counter is advanced until it is a
multiple of the requested alignment. If the location counter is already a multiple of the
requested alignment, no change is needed. In a code section, an alignment of 2 is
required to align to the next instruction word. The requested alignment must be a power
of 2.
fill is optional. If not specified, the last .pfillvalue specified is used to fill the
skipped bytes. All three bytes of the program memory word are filled.
max-skip is optional. If specified, it is the maximum number of bytes (including the
upper byte) that should be skipped by this directive. If doing the alignment would
require skipping more bytes than the specified maximum, then the alignment is not
done at all.

.fill repeat[, size[, fill]]

Reserve repeat copies of size bytes. repeat may be zero or more. size may be zero
or more, but if it is more than 8, then it is deemed to have the value 8. The content of
each repeat bytes is taken from an 8-byte number. The highest order 4 bytes are zero.
The lowest order 4 bytes are value rendered in the little-endian byte-order. Each size
bytes in a repetition is taken from the lowest order size bytes of this number.
size is optional and defaults to one, if omitted.
fill is optional. If not specified:
• In a data section, a value of 0x00 is used to fill the skipped bytes.
• In a code section, the last specified .fillvalue is used to fill the lower two bytes

of program memory and the last specified .fillupper is used to fill the upper pro-
gram memory byte.
 2013 Microchip Technology Inc. DS52106A-page 73

16-Bit Assembler, Linker and Utilities User’s Guide
.pfill repeat[, size[, fill]]

Reserve repeat copies of size bytes including the upper byte. repeat may be zero or
more. size may be zero or more, but if it is more than 8, then it is deemed to have the
value 8. The content of each repeat byte is taken from an 8-byte number. The highest
order 4 bytes are zero. The lowest order 4 bytes are value rendered in the little-endian
byte-order. Each size byte in a repetition is taken from the lowest order size bytes of
this number.
This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.
size is optional and defaults to one, if omitted. Size is the number of bytes to reserve
(including the upper byte).
fill is optional. If not specified, it defaults to the last .pfillvalue specified. All three
bytes of each instruction word are filled.

.org new-lc[, fill]

Advance the location counter of the current section to new-lc. In program memory,
new-lc is specified in PC units. On the 16-bit device, the PC increments by 2 for each
instruction word. Odd values are not permitted.

The bytes between the current location counter and the new location counter are filled
with fill. new-lc is an absolute expression. You cannot .org backwards. You cannot
use .org to cross sections.
The new location counter is relative to the current module and is not an absolute
address.
fill is optional. If not specified:
• In a data section, a value of 0x00 is used to fill the skipped bytes.
• In a code section, the last specified .fillvalue is used to fill the lower two bytes

of program memory and the last specified .fillupper is used to fill the upper pro-
gram memory byte.

.porg new-lc[, fill]

Advance the location counter of the current section to new-lc. In program memory,
new-lc is specified in PC units. On the 16-bit device, the PC increments by 2 for each
instruction word. Odd values are not permitted.

The bytes between the current location counter and the new location counter are filled
with fill. new-lc is an absolute expression. You cannot .porg backwards. You cannot
use .porg to cross sections.

Note: A location counter is not an absolute address but the offset from the start of
the section in which the .org occurs.

Note: A location counter is not an absolute address but the offset from the start of
the section in which the .porg occurs.
DS52106A-page 74 2013 Microchip Technology Inc.

Assembler Directives
The new location counter is relative to the current module and is not an absolute
address.
This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.
fill is optional. If not specified, it defaults to the last .pfillvalue specified. All three
bytes of each instruction word are filled.

.skip size[, fill]

.space size[, fill]

Reserve size bytes. Each byte is filled with the value fill.
fill is optional. If the value specified for fill is larger than a byte, a warning is dis-
played and the value is truncated to a byte. If not specified:
• In a data section, a value of 0x00 is used to fill the skipped bytes.
• In a code section, the last specified .fillvalue is used to fill the lower two bytes

of program memory and the last specified .fillupper is used to fill the upper pro-
gram memory byte.

.pskip size[, fill]

.pspace size[, fill]

Reserve size bytes (including the upper byte). Each byte is filled with the value fill.
This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.
The new location counter is relative to the current module and is not an absolute
address.
fill is optional. If the value specified for fill is larger than a byte, a warning is dis-
played and the value is truncated to a byte. If not specified, it defaults to the last
.pfillvalue specified. All three bytes of each instruction word are filled.

.struct expression

Switch to the absolute section, and set the section offset to expression, which must
be an absolute expression. You might use this as follows:
 .struct 0
field1:
 .struct field1 + 4
field2:
 .struct field2 + 4
field3:

This would define the symbol field1 to have the value 0, the symbol field2 to have
the value 4, and the symbol field3 to have the value 8. Assembly would be left in the
absolute section, and you would need to use a .section directive of some sort to
change to some other section before further assembly.
 2013 Microchip Technology Inc. DS52106A-page 75

16-Bit Assembler, Linker and Utilities User’s Guide
4.8 DIRECTIVES THAT FORMAT THE OUTPUT LISTING
Output listing format directives are:
.eject

.list

.nolist

.psize lines[, columns]

.sbttl “subheading”

.title “heading”

.eject

Force a page break at this point when generating assembly listings.

.list

Controls (in conjunction with .nolist) whether assembly listings are generated. This
directive increments an internal counter (which is one initially). Assembly listings are
generated if this counter is greater than zero.
Only functional when listings are enabled with the -a command line option and forms
processing has not been disabled with the -an command line option.

.nolist

Controls (in conjunction with .list) whether assembly listings are generated. This
directive decrements an internal counter (which is one initially). Assembly listings are
generated if this counter is greater than zero.
Only functional when listings are enabled with the -a command line option and forms
processing has not been disabled with the -an command line option.

.psize lines[, columns]

Declares the number of lines, and optionally, the number of columns to use for each
page when generating listings.
Only functional when listings are enabled with the -a command line option and forms
processing has not been disabled with the -an command line option.

.sbttl “subheading”

Use subheading as a subtitle (third line, immediately after the title line) when generat-
ing assembly listings. This directive affects subsequent pages, as well as the current
page, if it appears within ten lines of the top.

.title “heading”

Use heading as the title (second line, immediately after the source file name and page
number) when generating assembly listings.
DS52106A-page 76 2013 Microchip Technology Inc.

Assembler Directives
4.9 DIRECTIVES THAT CONTROL CONDITIONAL ASSEMBLY
Conditional assembly directives are:
.else

.elseif expr

.endif

.err

.error “string”

.if expr

.ifdecl symbol

.ifndecl symbol .ifnotdecl symbol

.ifdef symbol

.ifndef symbol .ifnotdef symbol

.else

Used in conjunction with the .if directive to provide an alternative path of assembly
code should the .if evaluate to false.

.elseif expr

Used in conjunction with the .if directive to provide an alternative path of assembly
code should the .if evaluate to false, and a second condition exists.

.endif

Marks the end of a block of code that is only assembled conditionally.

.err

If the assembler sees an .err directive, it will print an error message, and unless the
-Z option was used, it will not generate an object file. This can be used to signal an
error in conditionally compiled code.

.error “string”

Similar to .err, except that the specified string is printed.

.if expr

Marks the beginning of a section of code that is only considered part of the source pro-
gram being assembled if the argument expr is non-zero. The end of the conditional
section of code must be marked by an .endif; optionally, you may include code for the
alternative condition, flagged by .else.
 2013 Microchip Technology Inc. DS52106A-page 77

16-Bit Assembler, Linker and Utilities User’s Guide
.ifdecl symbol

Assembles the following section of code if the specified symbol has been declared.

.ifndecl symbol

.ifnotdecl symbol

Assembles the following section of code if the specified symbol has not been declared.

.ifdef symbol

Assembles the following section of code if the specified symbol has been defined (i.e.,
assigned a value).

.ifndef symbol

.ifnotdef symbol

Assembles the following section of code if the specified symbol has not been defined
(i.e., not assigned a value).
DS52106A-page 78 2013 Microchip Technology Inc.

Assembler Directives
4.10 DIRECTIVES FOR SUBSTITUTION/EXPANSION
Substitution/expansion directives are:
.exitm

.irp symbol, value1 [, ..., valuen]endr

.irpc symbol, valueendr

.macro symbol arg1[=default] [, ..., argn [=default]]endm

.purgem “name”

.rept countendr

.exitm

Exit early from the current marco definition. See .macro directive.

.irp symbol, value1
 [, ..., valuen]
...
.endr

Evaluate a sequence of statements assigning different values to symbol. The
sequence of statements starts at the .irp directive, and is terminated by a .endr direc-
tive. For each value, symbol is set to value, and the sequence of statements is assem-
bled. If no value is listed, the sequence of statements is assembled once, with symbol
set to the null string. To refer to symbol within the sequence of statements, use
\symbol.
For example, assembling:
.irp reg,0,1,2,3
push w\reg
.endr

is equivalent to assembling:
push w0
push w1
push w2
push w3
 2013 Microchip Technology Inc. DS52106A-page 79

16-Bit Assembler, Linker and Utilities User’s Guide
.irpc symbol, value

...

.endr

Evaluate a sequence of statements assigning different values to symbol. The
sequence of statements starts at the .irpc directive and is terminated by a .endr
directive. For each character in value, symbol is set to the character, and the sequence
of statements is assembled. If no value is listed, the sequence of statements is assem-
bled once, with symbol set to the null string. To refer to symbol within the sequence of
statements, use \symbol.
For example, assembling:
irpc reg,0123
push w\reg
.endr

is equivalent to assembling:
push w0
push w1
push w2
push w3

.macro symbol arg1[=default]
 [, ..., argn [=default]]
...
.endm

Define macros that generate assembly output. A macro accepts optional arguments
and can call other macros or even itself recursively.
If a macro definition requires arguments, specify their names after the macro name,
separated by commas or spaces. To refer to arguments within the macro block, use
\arg or &arg&. The second form can be used to combine an argument with additional
characters to create a symbol name.
For example, assembling:
.macro display_int sym
 mov \sym,w0
 rcall display
.endm

display_int result

is equivalent to assembling:
mov result,w0
rcall display
DS52106A-page 80 2013 Microchip Technology Inc.

Assembler Directives
In the next example, a macro is used to define HI- and LO-word constants for a 32-bit
integer.
 .macro LCONST name,value
 .equ \name,\value
 .equ &name&LO,(\value) & 0xFFFF
 .equ &name&HI,((\value)>>16) & 0xFFFF
 .endm

 LCONST seconds_per_day 60*60*24

 mov #seconds_per_dayLO,w0
 mov #seconds_per_dayHI,w1

xc16-as maintains a counter of how many macros have been executed in the
psuedo-variable \@. This value can be copied to the assembly output, but only within a
macro definition. In the following example, a recursive macro is used to allocate an arbi-
trary number of labeled buffers.
 .macro make_buffers num,size
BUF\@: .space \size
 .if (\num - 1)
 make_buffers (\num - 1),\size
 .endif
 .endm

 .bss
 make_buffers 4,16 ; create BUF0..BUF3, 16 bytes each

.purgem “name”

Undefine the macro name, so that later uses of the string will not be expanded. See
.macro directive.

.rept count

...

.endr

Repeat the sequence of lines between the .rept directive and the next .endr directive
count times.
For example, assembling
.rept 3
.long 0
.endr

is equivalent to assembling
.long 0
.long 0
.long 0
 2013 Microchip Technology Inc. DS52106A-page 81

16-Bit Assembler, Linker and Utilities User’s Guide
4.11 MISCELLANEOUS DIRECTIVES
Miscellaneous directives are:
.abort

.appline line-number .ln line-number

.end

.fail expression

.ident “comment”

.incbin “file”[,skip[,count]]

.include “file”

.loc file-number, line-number

.pincbin “file”[,skip[,count]]

.print “string”

.version “string”

.abort

Prints out the message “.abort detected. Abandoning ship.” and exits the program.

.appline line-number

.ln line-number

Change the logical line number. The next line has that logical line number.

.end

End program

.fail expression

Generates an error or a warning. If the value of the expression is 500 or more, as will
print a warning message. If the value is less than 500, xc16-as will print an error mes-
sage. The message will include the value of expression. This can occasionally be use-
ful inside complex nested macros or conditional assembly.

.ident “comment”

Appends comment to the section named .comment. This section is created if it does not
exist. The 16-bit linker will ignore this section when allocating program and data mem-
ory, but will combine all.comment sections together, in link order.
DS52106A-page 82 2013 Microchip Technology Inc.

Assembler Directives
.incbin “file”[,skip[,count]]

The .incbin directive includes file verbatim at the current location. The file is
assumed to contain binary data. The search paths used can be specified with the -I
command-line option (see Chapter 2. “Assembler Command Line Options”). Quo-
tation marks are required around file.
The skip argument skips a number of bytes from the start of the file. The count argu-
ment indicates the maximum number of bytes to read. Note that the data is not aligned
in any way, so it is the user's responsibility to make sure that proper alignment is pro-
vided both before and after the .incbin directive.
When used in an executable section, .incbin fills only the lower 16 bits of each pro-
gram word.

.include “file”

Provides a way to include supporting files at specified points in your source code. The
code is assembled as if it followed the point of the .include. When the end of the
included file is reached, assembly of the original file continues at the statement follow-
ing the .include.

.loc file-number, line-number

.loc is essentially the same as .ln. The assembler expects that this directive occurs
in the.text section. file-number is ignored.

.pincbin “file”[,skip[,count]]

The .pincbin directive includes file verbatim at the current location. The file is
assumed to contain binary data. The search paths used can be specified with the -I
command-line option (see Chapter 2. “Assembler Command Line Options”). Quo-
tation marks are required around file.
The skip argument skips a number of bytes from the start of the file. The count argu-
ment indicates the maximum number of bytes to read. Note that the data is not aligned
in any way, so it is the user's responsibility to make sure that proper alignment is pro-
vided both before and after the .pincbin directive.
.pincbin is supported only in executable sections, and fills all 24 bits of each program
word.

.print “string”

Prints string on the standard output during assembly.

.version “string”

This directive creates a .note section and places into it an ELF formatted note of type
NT_VERSION. The note's name is set to string. .version is supported when the out-
put file format is ELF; otherwise, it is ignored.
 2013 Microchip Technology Inc. DS52106A-page 83

16-Bit Assembler, Linker and Utilities User’s Guide
4.12 DIRECTIVES FOR DEBUG INFORMATION
Debug information directives are:
.def name

.dim

.endef

.file “string”

.line line-number

.scl class

.size expression

.size name, expression

.sleb128 expr1 [, ..., exprn]

.tag structname

.type value

.type name, description

.uleb128 expr1[,...,exprn]

.val addr

.def name

Begin defining debugging information for a symbol name; the definition extends until
the.endef directive is encountered.

.dim

Generated by compilers to include auxiliary debugging information in the symbol table.
Only permitted inside .def/.endef pairs.

.endef

Flags the end of a symbol definition begun with.def.

.file “string”

Tells the assembler that it is about to start a new logical file. This information is placed
into the object file.

.line line-number

Generated by compilers to include auxiliary symbol information for debugging. Only
permitted inside .def/.endef pairs.

.scl class

Set the storage class value for a symbol. May only be used within .def/.endef pairs.
DS52106A-page 84 2013 Microchip Technology Inc.

Assembler Directives
.size expression

Generated by compilers to include auxiliary debugging information in the symbol table.
Only permitted inside .def/.endef pairs.

.size name, expression

Generated by compilers to include auxilliary information for debugging. This variation
of .size is supported when the output file format is in Executable and Linking Format
(ELF).

.sleb128 expr1 [, ..., exprn]

Signed little endian base 128. Compact variable length representation of numbers used
by the DWARF symbolic debugging format.

.tag structname

Generated by compilers to include auxiliary debugging information in the symbol table.
Only permitted inside .def/.endef pairs. Tags are used to link structure definitions in
the symbol table with instances of those structures.

.type value

Records the integer value as the type attribute of a symbol table entry. Only permitted
within .def/.endef pairs.

.type name, description

Sets the type of symbol name to be either a function symbol or an object symbol. This
variation of .type is supported when the output file format is ELF. For example,
 .text
 .type foo,@function
foo:
 return

 .data
 .type dat,@object
dat: .word 0x1234

.uleb128 expr1[,...,exprn]

Unsigned little endian base 128. Compact variable length representation of numbers
used by the DWARF symbolic debugging format.

.val addr

Records the address addr as the value attribute of a symbol table entry. Only permitted
within .def/.endef pairs.
 2013 Microchip Technology Inc. DS52106A-page 85

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 86 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 5. Assembler Listing File
5.1 INTRODUCTION
The assembler has the capability to produce listing files. These listing files are not
absolute listing files, and the addresses that appear in the listing are relative to the start
of sections.
Topics covered in this chapter are:
• Generation
• Contents

5.2 GENERATION
To generate a listing file whether in MPLAB X IDE, in MPLAB IDE v8 or on the com-
mand line, you will need to specify an option described in Section 2.3 “Options that
Modify the Listing Output”. By default, a listing file is written to a .lst file.
 2013 Microchip Technology Inc. DS52106A-page 87

16-Bit Assembler, Linker and Utilities User’s Guide
5.3 CONTENTS
The listing files produced by the assembler are composed of the several elements.
Example 5-1 shows a sample listing file.
The example listing file contains these elements:
• Header – contains the name of the assembler, the name of the file being assem-

bled, and a page number. This is not shown if the -an option is specified.
• Title Line – contains the title specified by the .title directive. This is not shown

if the -an option is specified.
• Subtitle – contains the subtitle specified by the .sbttl directive. This is not

shown if the -an option is specified.
• High-level source if the -ah option is given to the assembler. The format for

high-level source is:
<line #>:<filename> **** <source>
For example:
1:hello.c **** #include <stdio.h>

• Assembler source if the -al option is given to the assembler. The format for
assembler source is:
<line #> <addr> <encoded bytes> <source>
For example:
245 000004 00 0F 78 mov w0,[w14]

• Symbol table if the -as option is given to the assembler. Both, a list of defined
and undefined symbols will be given. The defined symbols will have the format:
DEFINED SYMBOLS
<filename>:<line #> <section>:<addr> <symbol>
For example:
DEFINED SYMBOLS
foo.s:229 .text:00000000 _main

The undefined symbols will have the format:
UNDEFINED SYMBOLS
<symbol>
For example:
UNDEFINED SYMBOLS
printf

Notes:
1: Line numbers may be repeated.
2: Addresses are relative to sections in this module and are not absolute.
3: Instructions are encoded in “little endian” order.
DS52106A-page 88 2013 Microchip Technology Inc.

Assembler Listing File
EXAMPLE 5-1: SAMPLE ASSEMBLER LISTING FILE

MPLAB XC16_ASM_ Listing: example1.1.s page 1
 Sample dsPIC Assembler Source Code
 For illustration only.
 1
 2 .title " Sample dsPIC Assembler Source Code"
 3 .sbttl " For illustration only."
 4
 5 ; dsPIC registers
 6 .equ CORCONL, CORCON
 7 .equ PSV,2
 8
 9 .section .const,psv
 10 hello:
 11 0000 48 65 6C 6C .ascii "Hello world!\n\0"
 11 6F 20 77 6F
 11 72 6C 64 21
 11 0A 00
 12
 13 .text
 14 .global __reset
 15 __reset:
 16 ; set PSVPAG to page that contains 'hello'
 17 000000 00 00 20 mov #psvpage(hello),w0
 18 000002 00 00 88 mov w0,PSVPAG
 19
 20 ; enable Program Space Visibility
 21 000004 00 40 A8 bset.b CORCONL,#PSV
 22
 23 ; make a pointer to 'hello'
 24 000006 00 00 20 mov #psvoffset(hello),w0
 25
 26 .end
 2013 Microchip Technology Inc. DS52106A-page 89

16-Bit Assembler, Linker and Utilities User’s Guide
MPLAB XC16_ASM_ Listing: example1.1.s page 2
 Sample dsPIC Assembler Source Code
 For illustration only.
DEFINED SYMBOLS
 ABS:00000000 fake
 example1.1.s:10 .const:00000000 hello
 example1.1.s:15 .text:00000000 __reset
 .text:00000000 .text
 .data:00000000 .data
 .bss:00000000 .bss
 .const:00000000 .const

UNDEFINED SYMBOLS
CORCON
PSVPAG
DS52106A-page 90 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 6. Assembler Errors/Warnings/Messages
6.1 INTRODUCTION
MPLAB XC16 Assembler may generate errors, warnings and messages. To select the
messages that are generated, see Section 2.4 “Options that Control Informational
Output”.
The following topics are covered in this appendix:
• Fatal Errors
• Errors
• Warnings
• Messages
For information on assembler limitations and known problems, see the Readme file.

6.2 FATAL ERRORS
The following errors indicate that an internal error has occurred in the assembler.
Please contact Microchip Technology for support if any of the following errors are
generated:
• A dummy instruction cannot be used!
• bad floating-point constant: exponent overflow, probably assembling junk
• bad floating-point constant: unknown error code=error_code
• C_EFCN symbol out of scope
• Can’t continue
• Can’t extend frag num. chars
• Can’t open a bfd on stdout name
• Case value val unexpected at line _line_ of file “_file_”
• emulations not handled in this configuration
• error constructing pop_table_name pseudo-op table: err_txt
• expr.c(operand): bad atof_generic return val val
• failed sanity check.
• filename:line_num: bad return from bfd_install_relocation: val
• filename:line_num: bad return from bfd_install_relocation
• Inserting “name” into symbol table failed: error_string
• pic30_get_g_or_h_mode_value called with an invalid operand type
• pic30_get_p_or_q_mode_value called with an invalid operand type
• pic30_insert_dsp_writeback called with an invalid operand type
• pic30_insert_dsp_x_prefetch_operation called with an invalid offset
• pic30_insert_dsp_x_prefetch_operation called with an invalid operand type
• pic30_insert_dsp_y_prefetch_operation called with an invalid offset
 2013 Microchip Technology Inc. DS52106A-page 91

16-Bit Assembler, Linker and Utilities User’s Guide
• pic30_insert_dsp_y_prefetch_operation called with an invalid operand type
• invalid segment “name”; segment “name” assumed
• label “temp$” redefined
• macros nested too deeply
• missing emulation mode name
• multiple emulation names specified
• Relocation type not supported by object file format
• reloc type not supported by object file format
• rva not supported
• rva without symbol
• unrecognized emulation name ‘em’
• Unsupported BFD relocation size in bytes

6.3 ERRORS
Symbol A B C D E F I L M N O P R S T U W

Symbol
.abort detected. Abandoning ship.
User error invoked with the .abort directive.
.else without matching .if - ignored.
An .else directive was seen without a preceding .if directive.
“.elseif” after “.else” - ignored
An .elseif directive specified after a .else directive. Modify your code so that the
.elseif directive comes before the .else directive.
“.elseif” without matching “.if” - ignored.
An .elseif directive was seen without a preceding .if directive.
“.endif” without “.if”
An .endif directive was seen without a preceding .if directive.
.err encountered.
A user error invoked with the .err directive.
sign not valid in data allocation directive.
The # sign cannot be used within a data allocation directive (.byte, .word, .pword,
.long, etc.)
warnings, treating warnings as errors.
The --fatal-warnings command line option was specified on the command line
and warnings existed.

A
absolute address can not be specified for section '.const'.
Section .const is a C compiler resource. Although it is permissible for an application
to allocate constants in section .const explicitly, it is not permissible to assign an
absolute address for this section.
Absolute address must be greater than or equal to 0.
A negative absolute address was specified as the target for the DO or BRA instruction.
The assembler does not know anything about negative addresses.
DS52106A-page 92 2013 Microchip Technology Inc.

Assembler Errors/Warnings/Messages
Alignment in CODE section must be at least 2 units.
The alignment value for the .align directive must be at least 2 units. Either no align-
ment was specified or an alignment less than 2 was specified. Modify the .align
directive to have an alignment of at least 2.
Attributes for section 'name' conflict with implied attributes.
Certain section names have implied attributes. In this case, the attributes specified in
a .section directive conflict with its implied attributes. See Section 4.2 “Directives
that Define Sections” for more information.

B
backw. ref to unknown label “#:”, 0 assumed.
A backwards reference was made to a local label that was not seen. See
Section 5.3 “Reserved Names” for more information on local labels.
bad defsym; format is --defsym name=value.
The format for the command line option --defsym is incorrect. Most likely, you are
missing the = between the name and the value.
Bad expression.
The assembler did not recognize the expression. See Chapter 3. “Assembler Syn-
tax”, Chapter 4. “Assembler Expressions and Operators” and
Chapter 5. “Assembler Symbols”, for more details on assembler syntax.
bignum invalid; zero assumed.
The big number specified in the expression is not valid.
Byte operations expect an offset between -512 and 511.
The offset specified in [Wn+offset] or [Wn-offset] exceeded the maximum or minimum
value allowed for byte instructions.

C
Cannot call a symbol (name) that is not located in an executable section.
Attempted to CALL a symbol that is not located in a CODE section.
Cannot create floating-point number.
Could not create a floating-point number because of exponent overflow or because of
a floating-point exception that prohibits the assembler from encoding the floating-point
number.
Cannot redefine executable symbol ‘s’.
A statement label or an executable section cannot be redefined with a .set or .equ
directive.
Cannot reference executable symbol (name) in a data context.
An attempt was made to use a symbol in an executable section as a data address. To
reference an executable symbol in a data context, the psvoffset() or
tbloffset() operator is required.
Cannot use a constant as the argument of dmaoffset.
An attempt was made to use a constant as the argument to a dmaoffset.
Can not use dmaoffset on a symbol (name) that is not located in a dma section.
For some devices, the dmaoffset() operator can only be used on symbols that are
located in dma memory.
 2013 Microchip Technology Inc. DS52106A-page 93

16-Bit Assembler, Linker and Utilities User’s Guide
Cannot use operator on a symbol (name) that is not located in an executable or
read-only section.
The following operators can be applied to symbols in executable or read-only sections
only: tbloffset(), psvoffset(), tblpage(), psvpage(), handle(),
paddr().
Cannot use operator on a symbol (name) that is not located in a code, psv or
eedata section.
You cannot use one of the special operators (tbloffset, tblpage, psvoffset,
psvpage, handle or paddr) on a symbol that is not located in a code, psv or eedata
section.
Cannot use operator with this directive.
An attempt was made to use a special operator (tbloffset, tblpage, psvoffset,
psvpage, handle or paddr) with a data allocation directive that does not allocate
enough bytes to store the requested data.
Cannot write to output file.
For some reason, the output file could not be written to. Ensure that you have write
permission to the file and that there is enough disk space.
Can’t open file_name for reading.
The specified input source file could not be opened. Ensure that the file exists and that
you have permission to access the file.

D
directive directive not supported in pic30 target.
The pic30 target does not support this directive. This directive is available in other ver-
sions of the assembler, but the pic30 target does not support it for one reason or
another. Please check Chapter 4. “Assembler Directives” for a complete list of sup-
ported directives.
duplicate “else” - ignored.
Two .else directives were specified for the same .if directive.

E
end of file inside conditional.
The file ends without terminating the current conditional. Add a .endif to your code.
end of macro inside conditional.
A conditional is unterminated inside a macro. The .endif directive to end the current
conditional was not specified before seeing the .endm directive.
Expected comma after symbol-name: rest of line ignored.
Missing comma from the .comm directive after the symbol name.
Expected constant expression for fill argument.
The fill argument for the .fill, .pfill, .skip, .pskip, .space or .pspace direc-
tive must be a constant value. Attempted to use a symbol. Replace symbol with a
constant value.
Expected constant expression for new-lc argument.
The new location counter argument for the .org directive must be a constant value.
Attempted to use a symbol. Replace symbol with a constant value.
DS52106A-page 94 2013 Microchip Technology Inc.

Assembler Errors/Warnings/Messages
Expected constant expression for repeat argument.
The repeat argument for the .fill, .pfill, .skip, .pskip, .space or .pspace
directive must be a constant value. Attempted to use a symbol. Replace symbol with a
constant value.
Expected constant expression for size argument.
The size argument for the .fill or .pfill directive must be a constant value.
Attempted to use a symbol. Replace symbol with a constant value.
Expression too complex.
An expression is too complex for the assembler to process.

F
floating point number invalid; zero assumed.
The floating-point number specified in the expression is not valid.

I
Ignoring attempt to re-define symbol ‘symbol’.
The symbol that you are attempting to define with .comm or .lcomm has already been
defined and is not a common symbol.
Invalid expression (expr) contained inside of the brackets.
Assembler did not recognize the expression between the brackets.
invalid identifier for “.ifdef”.
The identifier specified after the .ifdef must be a symbol. See
Section 5.3 “Reserved Names” and Section 4.9 “Directives that Control
Conditional Assembly” for more details.
Invalid mnemonic: ‘token’.
The token being parsed is not a valid mnemonic for the instruction set.
invalid listing option ‘optarg’.
The sub-option specified is not valid. Acceptable suboptions are c, d, h, l, m, n, v and
=.
Invalid operands specified (‘insn’). Check operand #n.
The operands specified were invalid. The assembler was able to match n-1 operands
successfully. Although there is no assurance that operand #n is the culprit, it is a
general idea of where you should begin looking.
Invalid operand syntax (‘insn’).
This message usually comes hand-in-hand with one of the previous operand syntax
errors.
Invalid post increment value. Must be +/- 2, 4 or 6.
Assembler saw [Wn]+=value, where value is expected to be a +/- 2, 4 or 6. value
was not correct. Specify a value of +/- 2, 4 or 6.
Invalid post decrement value. Must be +/- 2, 4 or 6.
Assembler saw [Wn]-=value, where value is expected to be a +/- 2, 4 or 6. value
was not correct. Specify a value of +/- 2, 4 or 6.
Invalid register in operand expression.
Assembler was attempting to find either pre- or post-increment or decrement. The
operand did not contain a register. Specify one of the registers w0-w16 or W0-W16.
 2013 Microchip Technology Inc. DS52106A-page 95

16-Bit Assembler, Linker and Utilities User’s Guide
Invalid register in expression reg.
Assembler saw [junk] or [junk]+=n or [junk]-=n. Was expecting a register
between the brackets. Specify one of the registers w0-w16 or W0-W16 between the
brackets.
Invalid use of ++ in operand expression.
Assembler was attempting to find either pre- or post-increment. The operand specified
was neither pre-increment [++Wn] nor post-increment [Wn++]. Make sure that you
are not using the old syntax of [Wn]++.
Invalid use of -- in operand expression.
Assembler was attempting to find either pre- or post-decrement. The operand specified
was neither pre-decrement [--Wn] nor post-decrement [Wn--]. Make sure that you
are not using the old syntax of [Wn]--.
Invalid value (#) for relocation name.
The final value of the relocation is not a valid value for the operand associated with the
given relocation.
'name' is not a valid attribute name.
While processing a .section directive, the assembler found an identifier that is not a
valid section attribute.

L
Length of .comm “sym” is already #. Not changed to #.
An attempt was made to redefine the length of a common symbol.

M
misplaced)
Missing parenthesis when expanding a macro. The syntax \(...) will literally substitute
the text between the parenthesis into the macro. The trailing parenthesis was missing
from this syntax.
Missing model parameter.
Missing symbol in the .irp or .irpc directive.
Missing right bracket.
The assembler did not see the terminating bracket ‘]’.
Missing size expression.
The .lcomm directive is missing the length expression.
Missing ‘)’ after formals.
Missing trailing parenthesis when listing the macro formals inside of parenthesis.
Missing ‘)’ assumed.
Expected a terminating parenthesis ‘)’ while parsing the expression. Did not see one
where expected so assumes where you wanted the trailing parenthesis.
Missing ‘]’ assumed.
Expected a terminating brace ‘]’ while parsing the expression. Did not see one where
expected so assumes where you wanted the trailing brace.
Mnemonic not found.
The assembler was expecting to parse an instruction and could not find a mnemonic.
DS52106A-page 96 2013 Microchip Technology Inc.

Assembler Errors/Warnings/Messages
N
Negative of non-absolute symbol name.
Attempted to take the negative of a symbol name that is non-absolute. For example,
.word -sym, where sym is external.
New line in title.
The .title heading is missing a terminating quote.
non-constant expression in “.elseif” statement.
The argument of the .elseif directive must be a constant value able to be resolved
on the first pass of the directive. Ensure that any .equ of a symbol used in this
argument is located before the directive. See Section 4.9 “Directives that Control
Conditional Assembly” for more details.
non-constant expression in “.if” statement.
The argument of the .if directive must be a constant value able to be resolved on the
first pass of the directive. Ensure that any .equ of a symbol used in this argument is
located before the directive. See Section 4.9 “Directives that Control Conditional
Assembly” for more details.
Number of operands exceeds maximum number of 8.
Too many operands were specified in the instruction. The largest number of operands
accepted by any of the 16-bit device instructions is 8.

O
Only support plus register displacement (i.e., [Wb+Wn]).
Assembler found [Wb-Wn]. The syntax only supports a plus register displacement.
Operands share encoding bits. The operands must encode identically.
Two operands are register with displacement addressing mode [Wb+Wn]. The two
operands share encoding bits so the Wn portion must match or be able to be switched
to match the Wb of the other operand.
operation combines symbols in different segments.
The left-hand side of the expression and the right-hand side of the expression are
located in two different sections. The assembler does not know how to handle this
expression.
operator modifier must be preceded by a #.
The modifier (tbloffset, tblpage, psvoffset, psvpage, handle) was specified
inside of an instruction, but was not preceded by a #. Include the # to represent that
this is a literal.

P
paddr modifier not allowed in instruction.
The paddr operator was specified in an instruction. This operator can only be specified
in a .pword or .long directive as those are the only two locations that are wide
enough to store all 24 bits of the program address.
PC relative expression is not a valid GOTO target.
The assembler does not support expressions which modify the PC of a GOTO
destination such as “. + 4” or “sym + 100”.
 2013 Microchip Technology Inc. DS52106A-page 97

16-Bit Assembler, Linker and Utilities User’s Guide
R
Register expected as first operand of expression expr.
Assembler found [junk+anything] or [junk-anything]. The only valid expression
contained in brackets with a + or a - requires that the first operand be a register.
Register or constant literal expected as second operand of expression expr.
Assembler found [Wn+junk] or [Wn-junk]. The only valid operand for this format is a
register with plus or minus literal offset or a register with displacement.
Requested alignment 'n' is greater than alignment of absolute section 'name'
When the address() attribute is used to specify an absolute address for a section, it
constrains the ability of the assembler to align objects within the section. The alignment
specified in a .align or .palign directive must not be greater than the alignment
implied by the section address.

S
section alignment must be a power of two.
The argument to an align() or reverse() section attribute was invalid.
section address 0xnnnn exceeds near data range.
section address must be even.
section address must be in range [0..0x7ffffe].
The argument to an address() section attribute was invalid.
Symbol ‘name’ can not be both weak and common.
Both the .weak directive and .comm directive were used on the same symbol within
the same source file.
syntax error in .startof. or .sizeof.
The assembler found either .startof. or .sizeof., but did not find the beginning
parenthesis ‘(’ or ending parenthesis ‘)’. See Section 4.5.6 “Obtaining the Size of a
Specific Section” and Section 4.5.7 “Obtaining the Starting Address of a Specific
Section” for details on the .startof. and .sizeof. operators.

T
This expression is not a valid GOTO target.
The assembler does not support expressions that include unresolved symbols as a
GOTO destination.
Too few operands (‘insn’).
Too few operands were specified for this instruction.
Too many operands (‘insn’).
Too many operands were specified for this instruction.

U
unexpected end of file in irp or irpc.
The end of the file was seen before the terminating .endr directive.
unexpected end of file in macro definition.
The end of the file was seen before the terminating .endm directive.
DS52106A-page 98 2013 Microchip Technology Inc.

Assembler Errors/Warnings/Messages
Unknown pseudo-op: ‘directive’.
The assembler does not recognize the specified directive. Check to see that you have
spelled the directive correctly.
Note: the assembler expects that anything that is preceded by a dot (.) is a directive.

W
WAR hazard detected.
The assembler found a Write After Read hazard in the instruction. A WAR hazard
occurs when a common W register is used for both the source and destination given
that the source register uses pre/post-increment/decrement.
Word operations expect even offset.
An attempt was made to specify [Wn+offset] or [Wn-offset] where offset is even with a
word instruction.
Word operations expect an even offset between -1024 and 1022.
The offset specified in [Wn+offset] or [Wn-offset] was even, but exceeded the
maximum or minimum value allowed for word instructions.
 2013 Microchip Technology Inc. DS52106A-page 99

16-Bit Assembler, Linker and Utilities User’s Guide
6.4 WARNINGS
The assembler generates warnings when an assumption is made so that the assem-
bler could continue assembling a flawed program. Warnings should not be ignored.
Each warning should be specifically looked at and corrected to ensure that the
assembler understands what was intended. Warning messages can sometimes point
out bugs in your program.

Symbol
.def pseudo-op used inside of .def/.endef: ignored.
The specified directive is not allowed within a .def/.endef pair. .def/.endef
directives are used for specifying debugging information and normally are only gener-
ated by the compiler. If you are attempting to specify debugging information for your
assembly language program, note the following:
1. you want to use the .line directive to specify the line number information for

the symbol, and
2. you cannot nest .def/.endef directives.
.dim pseudo-op used outside of .def/.endef: ignored.
The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.
.endef pseudo-op used outside of .def/.endef: ignored.
The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.
.fill size clamped to 8.
The size argument (second argument) of the .fill directive specified was greater
then eight. The maximum size allowed is eight.
.fillupper expects a constant positive byte value. 0xXX assumed.
The .fillupper directive was specified with an argument that is not a constant
positive byte value. The last .fillupper value that was specified will be used.
.fillupper not specified in a code section. .fillupper ignored.
The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.
.fillvalue expects a constant positive byte value. 0xXX assumed.
The .fillvalue directive was specified with an argument that is not a constant
positive byte value. The last .fillvalue value that was specified will be used.
.fillvalue not specified in a code section. .fillvalue ignored.
The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.
DS52106A-page 100 2013 Microchip Technology Inc.

Assembler Errors/Warnings/Messages
.ln pseudo-op inside .def/.endef: ignored.
The specified directive is not allowed within a .def/.endef pair. .def/.endef
directives are used for specifying debugging information and normally are only gener-
ated by the compiler. If you are attempting to specify debugging information for your
assembly language program, note the following:
1. you want to use the .line directive to specify the line number information for

the symbol, and
2. you cannot nest .def/.endef directives.
.loc outside of .text.
The .loc directive must be specified in a .text section. The assembler has seen this
directive in a non-.text section. The directive has no effect.
.loc pseudo-op inside .def/.endef: ignored.
The specified directive is not allowed within a .def/.endef pair. .def/.endef
directives are used for specifying debugging information and normally are only gener-
ated by the compiler. If you are attempting to specify debugging information for your
assembly language program, note the following:
1. you want to use the .line directive to specify the line number information for

the symbol, and
2. you cannot nest .def/.endef directives.
.palign not specified in a code section. .palign ignored.
The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.
.pbyte not specified in a code section. .pbyte ignored.
The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.
.pfill not specified in a code section. .pfill ignored.
The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.
.pfill size clamped to 8.
The size argument (second argument) of the .fill directive specified was greater
then eight. The maximum size allowed is eight.
.pfillvalue expects a constant positive byte value. 0xXX assumed.
The .pfillvalue directive was specified with an argument that is not a constant pos-
itive byte value. The last .pfillvalue value that was specified will be used as if this
directive did not exist.
.pfillvalue not specified in a code section. .pfillvalue ignored.
The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.
.pword not specified in a code section. .pword ignored.
The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.
 2013 Microchip Technology Inc. DS52106A-page 101

16-Bit Assembler, Linker and Utilities User’s Guide
.size pseudo-op used outside of .def/.endef ignored.
The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.
.scl pseudo-op used outside of .def/.endef ignored.
The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.
.tag pseudo-op used outside of .def/.endef ignored.
The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.
.type pseudo-op used outside of .def/.endef ignored.
The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.
.val pseudo-op used outside of .def/.endef ignored.
The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.
DS52106A-page 102 2013 Microchip Technology Inc.

Assembler Errors/Warnings/Messages
A
Alignment too large: 2^15 assumed.
An alignment greater than 2^15 was requested. 2^15 is the largest alignment request
that can be made.

B
badly formed .dim directive ignored
The arguments for the .dim directive were unable to be parsed. This directive is used
to specify debugging information and normally is only generated by the compiler. If you
are attempting to specify debugging information for your assembly language program,
the arguments for the .dim directive are constant integers separated by a comma.

D
Directive not specified in a code section. Directive ignored.
The directive on the indicated line must be specified in a code section. The assembler
has seen this directive in a data section. This warning probably indicates that you forgot
to change sections to a code section.

E
error setting flags for “section_name”: error_message.
If this warning is displayed, then the GNU code has changed as the if statement always
evaluates false.
Expecting even address. Address will be rounded.
The absolute address specified for a CALL or GOTO instruction was odd. The address
is rounded up. You will want to ensure that this is the intended result.
Expecting even offset. Offset will be rounded.
The PC-relative instruction at this line contained an odd offset. The offset is rounded
up to ensure that the PC-relative instruction is working with even addresses.

I
Ignoring changed section attributes for section_name.
This section’s attributes have already been set, and the new attributes do not match
those previously set.
Ignoring fill value in absolute section.
A fill argument cannot be specified for either the .org or .porg directive when the
current section is absolute.
Implied attributes for section 'name' are deprecated.
Certain section names have implied attributes. In this case, a section was defined with-
out listing its implied attributes. For clarity and future compatibility, section attributes
should be listed explicitly. See Section 4.2 “Directives that Define Sections” for
more information.
 2013 Microchip Technology Inc. DS52106A-page 103

16-Bit Assembler, Linker and Utilities User’s Guide
L
Line numbers must be positive integers.
The line number argument of the .ln or .loc directive was less than or equal to zero
after specifying debugging information for a function. These directives are used to
specify debugging information and normally are only generated by the compiler. If you
are attempting to specify debugging information for your assembly language program,
note that function symbols can only exist on positive line numbers.

M
Macro ‘name’ has a previous definition.
A macro has been redefined without removing the previous definition with the .purgem
directive.
mismatched .eb
The assembler has seen a .eb directive without first seeing a matching .bb directive.
The .bb and .eb directives are the begin block and end block directives and must
always be specified in pairs.

O
Overflow/underflow for .long may lose significant bits.
A constant value specified in a .long directive is too large and will lose significant bits
when encoded.

Q
Quoted section flags are deprecated, use attributes instead.
Previous versions of the assembler recommended the use of single character section
flags. For clarity and future compatibility, attribute names should be used instead.

R
Repeat argument < 0. .fill ignored.
The repeat argument (first argument) of the .fill directive specified was less than
zero. The repeat argument must be an integer that is greater than or equal to zero.
Repeat argument < 0. .pfill ignored.
The repeat argument (first argument) of the .pfill directive specified was less than
zero. The repeat argument must be an integer that is greater than or equal to zero.

S
Size argument < 0. .fill ignored.
The size argument (second argument) of the .fill directive specified was less than
zero. The size argument must be an integer that is between zero and eight, inclusive.
If the size argument is greater than eight, it is deemed to have a value of eight.
Size argument < 0. .pfill ignored
The size argument (second argument) of the .pfill directive specified was less than
zero. The size argument must be an integer that is between zero and eight, inclusive.
If the size argument is greater than eight, it is deemed to have a value of eight.
DS52106A-page 104 2013 Microchip Technology Inc.

Assembler Errors/Warnings/Messages
‘symbol_name’ symbol without preceding function.
A .bf directive was seen without the preceding debugging information for the function
symbol. This directive is used to specify debugging information and normally is only
generated by the compiler. If you are attempting to specify debugging information for
your assembly language program, you must first .def the function symbol and give it
a .type of function (C_FCN = 101).

T
tag not found for .tag symbol_name.
This warning should not be seen unless the assembler was unable to create the given
symbol name. Check your code for errors. If you still receive this warning, contact tech-
nical support.

U
unexpected storage class sclass.
The assembler is processing the .endef directive and has either seen a storage class
that it does not recognize or has not seen a storage class. This directive is used to
specify debugging information and normally is only generated by the compiler. If you
are attempting to specify debugging information for your assembly language program,
you must specify a storage class using the .scl directive, and that storage class can-
not be one of the following:
1. Undefined static (C_USTATIC = 14)
2. External definition (C_EXTDEF = 5)
3. Undefined label (C_ULABEL = 7)
4. Dummy entry (end of block) (C_LASTENT = 20)
5. Line # reformatted as symbol table entry (C_LINE = 104)
6. Duplicate tag (C_ALIAS = 105)
7. External symbol in dmert public library (C_HIDDEN = 106)
8. Weak symbol - GNU extension to COFF (C_WEAKEXT = 127)
unknown section attribute ‘flag’.
The .section directive does not recognize the specified section flag. Please see
Section 4.2 “Directives that Define Sections”, for the supported section flags.
unsupported section attribute ‘i’.
The .section directive does not support the “i” section flag for COFF. Please see
Section 4.2 “Directives that Define Sections”, for the supported section flags.
unsupported section attribute ‘l’.
The .section directive does not support the “l” section flag for COFF. Please see
Section 4.2 “Directives that Define Sections”, for the supported section flags.
unsupported section attribute ‘o’.
The .section directive does not support the “o” section flag for COFF. Please see
Section 4.2 “Directives that Define Sections”, for the supported section flags.

V
Value get truncated to use.
The fill value specified for either the .skip, .pskip, .space, .pspace, .org or
.porg directive was larger than a single byte. The value has been truncated to a byte.
 2013 Microchip Technology Inc. DS52106A-page 105

16-Bit Assembler, Linker and Utilities User’s Guide
6.5 MESSAGES
The assembler generates messages when a non-critical assumption is made so that
the assembler could continue assembling a flawed program. Messages may be
ignored. However, messages can sometimes point out bugs in your program.
DS52106A-page 106 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Part 2 – MPLAB XC16 Object Linker
Chapter 7. Linker Overview... 109
Chapter 8. Linker Command Line Interface... 113
Chapter 9. Linker Scripts... 131
Chapter 10. Linker Processing ... 167
Chapter 11. Linker Examples .. 207
Chapter 12. Linker Map File .. 217
Chapter 13. Linker Errors/Warnings... 221
 2013 Microchip Technology Inc. DS52106A-page 107

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 108 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 7. Linker Overview
7.1 INTRODUCTION
MPLAB XC16 Object Linker produces binary code from relocatable object code, and
any archive/library files, for the dsPIC® DSC and PIC24 MCU families of devices. The
16-bit linker is an application that provides a platform for developing executable code.
The linker is a part of the GNU linker from the Free Software Foundation.
Topics covered in this chapter are:
• Feature Set
• Linker Usage
• Input/Output Files

7.2 FEATURE SET
Notable features of the linker include:
• Automatic or user-defined stack allocation
• Supports 16-bit Program Space Visibility (PSV) window
• Available for Windows, Linux and Mac OS
• Command Line Interface
• Linker scripts for all 16-bit devices
• Available for MPLAB® X IDE and MPLAB IDE v8

7.3 LINKER USAGE
The MPLAB XC16 Object Linker translates object files from the MPLAB XC16 assem-
bler, and archive/library files from the MPLAB XC16 archiver/librarian, into an execut-
able file. See the “MPLAB XC16 C Compiler User’s Guide” (DS52071) for an overview
of the tools process flow.
In most instances it will not be necessary to invoke the linker directly, as the compiler
driver, xc16-gcc, will automatically execute the linker with all necessary arguments.
Using the linker directly is not simple, and should be attempted only by those with a
sound knowledge of the compiler and linking in general. The compiler often makes
assumptions about the way in which the program will be linked. If the linker sections
are not linked correctly, code failure may result.
 2013 Microchip Technology Inc. DS52106A-page 109

16-Bit Assembler, Linker and Utilities User’s Guide
7.4 INPUT/OUTPUT FILES
Linker input and output files are listed below.

Unlike the MPLINK linker, the MPLAB XC16 linker does not generate absolute listing
files. The 16-bit linker is capable of creating a map file and a binary file (that may or
may not contain debugging information).

7.4.1 Object Files
Relocatable code produced from source files. The linker accepts ELF format object files
by default. To specify ELF or COFF object format explicitly, use the -omf command line
option, as shown:
xc16-ld -omf=elf ...

Alternatively, the environment variable XC16_OMF may be used to specify object file
format for the 16-bit language tools.

7.4.2 Library Files
A collection of object files grouped together for convenience.

7.4.3 Linker Script File
Linker scripts, or command files:
• Instruct the linker where to locate sections
• Specify memory ranges for a given part
• Can be customized to locate user-defined sections at specific addresses
For more on linker script files, see Chapter 9. “Linker Scripts”.

TABLE 7-1: LINKER FILES
Extension Description

Input
.o object file

.a library file

.gld linker script file

Output
.exe, .out binary file

.map map file
DS52106A-page 110 2013 Microchip Technology Inc.

Linker Overview
EXAMPLE 7-1: LINKER SCRIPT

OUTPUT_FORMAT("coff-pic30")
OUTPUT_ARCH("pic30")

MEMORY
{
 data (a!xr) : ORIGIN = 0x800, LENGTH = 1024
 program (xr) : ORIGIN = 0, LENGTH = (8K * 2)
}

SECTIONS
{
.text :
 {
 *(.vector);
 *(.handle);
 *(.text);
 } >program

.bss (NOLOAD):
 {
 *(.bss);
 } >data

.data :
 {
 *(.data);
 } >data
} /* SECTIONS */

WREG0 = 0x00;
WREG1 = 0x02;

7.4.4 Linker Output File
By default, the name of the linker output binary file is a.out. You can override the
default name by specifying the -o option on the command line. The format of the binary
file is an executable ELF file by default. To specify a ELF or COFF executable file, use
the -omf option as shown in Section 7.4.1 “Object Files”.

7.4.5 Map File
The linker has the capability to produce map files. For details on how to generate a map
file and the components of that file, see Chapter 12. “Linker Map File”.
 2013 Microchip Technology Inc. DS52106A-page 111

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 112 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 8. Linker Command Line Interface
8.1 INTRODUCTION
MPLAB XC16 Object Linker may be used on the command line interface as well as with
an IDE.

8.2 HIGHLIGHTS
Topics covered in this chapter are:
• Syntax
• Options that Control Output File Creation
• Options that Control Run-time Initialization
• Options that Control Informational Output
• Options that Modify the Link Map Output
• Options that Specify CodeGuard™ Security Features
• Options that Control the Preprocessor

8.3 SYNTAX
The linker supports many command line options, but in actual practice few of them are
used in any particular context.
xc16-ld [options] file...

For example, xc16-ld links object files and archives to produce a binary file. To link a
file hello.o:
xc16-ld -o output hello.o -lpic30

This tells xc16-ld to produce a file called output as the result of linking the file
hello.o with the archive libpic30.a.
When linking a C application, there are typically several archives (also known as “librar-
ies”) which are included in the link command. The list of archives may be specified
within --start-group, --end-group options to help resolve circular references:
xc16-ld -o output hello.o --start-group -lpic30 -lm -lc --end-group

The command line options to xc16-ld may be specified in any order, and may be
repeated at will. Repeating most options with a different argument will either have no
further effect, or override prior occurrences (i.e., those farther to the left on the com-
mand line) of that option. Options that may be meaningfully specified more than once
are noted in the descriptions below.
Non-option arguments are object files that are to be linked together. They may follow,
precede or be mixed in with command line options, except that an object file argument
may not be placed between an option and its argument.

Note: Command line options are case sensitive.
 2013 Microchip Technology Inc. DS52106A-page 113

16-Bit Assembler, Linker and Utilities User’s Guide
Usually the linker is invoked with at least one object file, but you can specify other forms
of binary input files using -l (lowercase L) and the script command language. If no
binary input files are specified, the linker does not produce any output, and issues the
message ‘No input files’.
If the linker cannot recognize the format of an object file, it will assume that it is a linker
script. A script specified in this way augments the main linker script used for the link
(either the default linker script or the one specified by using -T). This feature permits
the linker to link against a file that appears to be an object or an archive; but, actually,
merely defines some symbol values, or uses INPUT or GROUP to load other objects.
For options with names that are a single letter, option arguments must either follow the
option letter without intervening white space, or be given as separate arguments
immediately following the option that requires them.
For options with names that are multiple letters, either one dash or two can precede the
option name; for example, -trace-symbol and --trace-symbol are equivalent.
There is one exception to this rule. Multiple-letter options that begin with the letter o can
only be preceded by two dashes.
Arguments to multiple-letter options must either be separated from the option name
by an equal sign, or be given as separate arguments immediately following the
option that requires them. For example, --trace-symbol srec and
--trace-symbol=srec are equivalent. Unique abbreviations of the names of
multiple-letter options are accepted.
DS52106A-page 114 2013 Microchip Technology Inc.

Linker Command Line Interface
8.4 OPTIONS THAT CONTROL OUTPUT FILE CREATION
Output file creation options are:
--architecture arch (-A arch)

-(archives -), --start-group archives, --end-group

-d, -dc, -dp

--defsym sym=expr

--discard-all (-x)

--discard-locals (-X)

--fill=option

--fill-upper value

--force-exe-suffix

--force-link

--no-force-link

--gc-sections

--isr

--no-isr

-legacy-libc

--library libname (-l libname)

--library-path <dir> (-L <dir>)

--no-keep-memory

--noinhibit-exec

-omf=format

--output file (-o file)

-p,--processor PROC

--relocatable (-r, -i, -Ur)

--retain-symbols-file file

--script file (-T file)

--select-objects

--no-select-objects

--smart-io

--no-smart-io

--strip-all (-s)

--strip-debug (-S)

-Tbss address

-Tdata address

-Ttext address

--undefined symbol (-u symbol)

--no-undefined

--wrap symbol

8.4.1 --architecture arch (-A arch)
Set architecture.
The architecture argument identifies the particular architecture in the 16-bit devices,
enabling some safeguards and modifying the archive-library search path.
 2013 Microchip Technology Inc. DS52106A-page 115

16-Bit Assembler, Linker and Utilities User’s Guide
8.4.2 -(archives -), --start-group archives, --end-group
Start and end a group.
The archives should be a list of archive files. They may be either explicit file names, or
-l options. The specified archives are searched repeatedly until no new undefined ref-
erences are created. Normally, an archive is searched only once in the order that it is
specified on the command line. If a symbol in that archive is needed to resolve an unde-
fined symbol referred to by an object in an archive that appears later on the command
line, the linker would not be able to resolve that reference. By grouping the archives,
they will all be searched repeatedly until all possible references are resolved. Using this
option has a significant performance cost. It is best to use it only when there are
unavoidable circular references between two or more archives.

8.4.3 -d, -dc, -dp
Force common symbols to be defined.
Assign space to common symbols even when a relocatable output file is specified (i.e.,
with -r).

8.4.4 --defsym sym=expr
Define a symbol.
Create a global symbol in the output file that contains the absolute address given by
expr. You may use this option as many times as necessary to define multiple symbols
in the command line. A limited form of arithmetic is supported for the expr in this con-
text: you may give a hexadecimal constant or the name of an existing symbol, or use
+ and - to add or subtract hexadecimal constants or symbols.

8.4.5 --discard-all (-x)
Discard all local symbols.

8.4.6 --discard-locals (-X)
Discard temporary local symbols.

8.4.7 --fill=option
Fill unused program memory. The format is:
--fill=[wn:]expression[@address[:end_address] | unused]

address and end_address will specify the range of program memory addresses to
fill. If end_address is not provided, then the expression will be written to the spe-
cific memory location at address address. The optional literal value unused may be
specified to indicate that all unused memory will be filled. If none of the location param-
eters are provided, all unused memory will be filled. expression will describe how to
fill the specified memory. The following options are available:
Single value
 xc16-ld --fill=0x12345678@unused

Range of values
 xc16-ld --fill=1,2,3,4,097@0x9d000650:0x9d000750

Incrementing value
 xc16-ld --fill=7+=911@unused

Note: There should be no white space between sym, the equals sign (“=”) and
expr.
DS52106A-page 116 2013 Microchip Technology Inc.

Linker Command Line Interface
By default, the linker will fill using data that is instruction-word length. For 16-bit
devices, the default fill width is 24 bits. However, you may specify the value width using
[wn:], where w is the fill value's width and n belongs to [1, 3].
Multiple fill options may be specified on the command line; the linker will always pro-
cess fill options at specific locations first.

8.4.8 --fill-upper value
Set fill value for upper byte of data.
Use value as the upper byte (bits 16-23) when encoding data into program memory.
This option affects the encoding of sections created with the psv or eedata attribute,
and also the data initialization template if the --no-pack-data option is enabled. If
this option is not specified, a default value of 0 will be used.

8.4.9 --force-exe-suffix
Force generation of file with .exe suffix.

8.4.10 --force-link
Force linking of objects that may not be compatible.
If a target processor has been specified with the -p,--processor option, the linker
will compare it to information contained in the objects combined during the link. If a pos-
sible conflict is detected, an error (i.e., in the case of a possible instruction set incom-
patibility) or a warning (i.e., in the case of possible register incompatibility) will be
reported. Specify this option to override such errors or warnings.

8.4.11 --no-force-link
Do not force linking of objects that may not be compatible. (This is the default.)

8.4.12 --gc-sections
Remove unused (dead) functions from code at link time.
Support is for ELF projects only. In order to make the best use of this feature, add the
-ffunction-sections option to the compiler command line.

8.4.13 --isr
Create an interrupt function for unused vectors. (This is the default.)
If a function named __DefaultInterrupt is defined by an application, the linker will
insert its address into unused slots in the primary and alternate vector tables. If this
function is not defined, create a function that consists of a single reset instruction and
insert the address of this function.

8.4.14 --no-isr
Do not create an interrupt function for unused vectors.
Do not create a default interrupt function if an application does not provide one. The
value of 0 will be inserted into unused slots in the primary and alternate vector tables.

8.4.15 -legacy-libc
Use legacy include files and libraries (those distributed with v3.24 and before).
The content of include file and libraries changed in v3.25 to be compatible with the
HI-TECH C compiler.
 2013 Microchip Technology Inc. DS52106A-page 117

16-Bit Assembler, Linker and Utilities User’s Guide
8.4.16 --library libname (-l libname)
Search for library libname.
Add archive file libname to the list of files to link. This option may be used any number
of times. xc16-ld will search its path-list for occurrences of liblibname.a for every
libname specified. The linker will search an archive only once, at the location where
it is specified on the command line. If the archive defines a symbol that was undefined
in some object that appeared before the archive on the command line, the linker will
include the appropriate file(s) from the archive. However, an undefined symbol in an
object appearing later on the command line will not cause the linker to search the
archive again. See the -(option for a way to force the linker to search archives multiple
times. You may list the same archive multiple times on the command line.
If the format of the archive file is not recognized, the linker will ignore it. Therefore, a
version mismatch between libraries and the linker may result in “undefined symbol”
errors.
If file liblibname.a is not found, the linker will search for an omf-specific version of
the library with name liblibname-coff.a or liblibname-elf.a.

8.4.17 --library-path <dir> (-L <dir>)
Add <dir> to library search path.
Add path <dir> to the list of paths that xc16-ld will search for archive libraries and
xc16-ld control scripts. You may use this option any number of times. The directories
are searched in the order in which they are specified on the command line. All -L
options apply to all -l options, regardless of the order in which the options appear. The
library paths can also be specified in a link script with the SEARCH_DIR command.
Directories specified this way are searched at the point in which the linker script
appears in the command line.

8.4.18 --no-keep-memory
Use less memory and more disk I/O.
xc16-ld normally optimizes for speed over memory usage by caching the symbol
tables of input files in memory. This option tells xc16-ld to instead optimize for mem-
ory usage by rereading the symbol tables, as necessary. This may be required if
xc16-ld runs out of memory space while linking a large executable.

8.4.19 --noinhibit-exec
Create an output file even if errors occur.
Retain the executable output file whenever it is still usable. Normally, when the linker
encounters an error during the link process, it will exit without writing an output file.

8.4.20 -omf=format
xc16-ld produces ELF format output binary files by default. Use this option to specify
ELF or COFF format explicitly. Alternatively, the environment variable XC16_OMF may
be used to specify object file format for the 16-bit language tools.

Note: The input and output file formats must match. The -omf option can be used
to specify both input and output file formats.
DS52106A-page 118 2013 Microchip Technology Inc.

Linker Command Line Interface
8.4.21 --output file (-o file)
Set output file name.
Use file as the name for the program produced by xc16-ld; if this option is not
specified, the name a.out is used by default.

8.4.22 -p,--processor PROC
Specify the target processor (e.g., 30F2010).
Specify a target processor for the link. This information will be used to detect possible
incompatibility between objects during the link. See --force-link for more
information.

8.4.23 --relocatable (-r, -i, -Ur)
Generate relocatable output.
That is, generate an output file that can, in turn, serve as input to xc16-ld. This is often
called partial linking. If this option is not specified, an absolute file is produced.

8.4.24 --retain-symbols-file file
Keep only symbols listed in file.
Retain only the symbols listed in the file file, discarding all others. file is simply a
flat file, with one symbol name per line. This option is especially useful in environments
where a large global symbol table is accumulated gradually, to conserve run-time mem-
ory. --retain-symbols-file does not discard undefined symbols, or symbols
needed for relocations. You may only specify --retain-symbols-file once in the
command line. It overrides -s and -S.

8.4.25 --script file (-T file)
Read linker script.
Read link commands from the file file. These commands replace the default link
script of xc16-ld (rather than adding to it), so file must specify everything neces-
sary to describe the target format. If file does not exist, xc16-ld looks for it in the
directories specified by any preceding -L options. Multiple -T options accumulate.

8.4.26 --select-objects
Select library objects based on options. (This is the default.)
Some compiler options, such as -mlarge-arrays, must be set consistently across
all objects in an application. In order to maintain full compatibility, pre-compiled libraries
must contain multiple versions of each object. Library objects are selected based on a
signature which is created by the compiler and reflects the options used to create the
object. Objects from older libraries that lack a signature are considered to be
compatible if the restrictive compiler options have not been set.

8.4.27 --no-select-objects
Don't select library objects based on options.
This option causes the linker to load the first instance of a library object, regardless of
the options signature. This option can be used to force library compatibility with
restrictive compiler options, even if the library lacks a signature.
 2013 Microchip Technology Inc. DS52106A-page 119

16-Bit Assembler, Linker and Utilities User’s Guide
8.4.28 --smart-io
Merge I/O library functions when possible. (This is the default.)
Several I/O functions in the standard C library exist in multiple versions. For example,
there are separate output conversion functions for integers, short doubles and long
doubles. If this option is enabled, the linker will merge function calls to reduce memory
usage whenever possible. Library function merging will not result in a loss of
functionality.

8.4.29 --no-smart-io
Don't merge I/O library functions.
Do not attempt to conserve memory by merging I/O library function calls. In some
instances, the use of this option will increase memory usage.

8.4.30 --strip-all (-s)
Strip all symbols.
Omit all symbol information from the output file.

8.4.31 --strip-debug (-S)
Strip debugging symbols.
Omit debugger symbol information (but not all symbols) from the output file.

8.4.32 -Tbss address
Set address of .bss section.
Use address as the starting address for the bss segment of the output file. address
must be a single hexadecimal integer. For compatibility with other linkers, you may omit
the leading 0x usually associated with hexadecimal values.
Normally the address of this section is specified in a linker script.

8.4.33 -Tdata address
Set address of .data section.
Use address as the starting address for the data segment of the output file. address
must be a single hexadecimal integer. For compatibility with other linkers, you may omit
the leading 0x usually associated with hexadecimal values.
Normally the address of this section is specified in a linker script.

8.4.34 -Ttext address
Set address of .text section.
Use address as the starting address for the text segment of the output file. address
must be a single hexadecimal integer. For compatibility with other linkers, you may omit
the leading 0x usually associated with hexadecimal values.
Normally the address of this section is specified in a linker script.

8.4.35 --undefined symbol (-u symbol)
Start with undefined reference to symbol.
Force symbol to be entered into the output file as an undefined symbol. Doing this
may, for example, trigger linking of additional modules from standard libraries. -u may
be repeated with different option arguments to enter additional undefined symbols.
DS52106A-page 120 2013 Microchip Technology Inc.

Linker Command Line Interface
8.4.36 --no-undefined
Allow no undefined symbols.

8.4.37 --wrap symbol
Use wrapper functions for symbol.
Any undefined reference to symbol will be resolved to __wrap_symbol. Any unde-
fined reference to __real_symbol will be resolved to symbol. This can be used to
provide a wrapper for a system function. The wrapper function should be called
__wrap_symbol. If it wishes to call the system function, it should call
__real_symbol.
Here is a trivial example:
void *
__wrap_malloc (int c)
{
 printf ("malloc called with %ld\n", c);
 return __real_malloc (c);
}

If you link other code with this file using --wrap malloc, then all calls to malloc will
call the function __wrap_malloc instead. The call to __real_malloc in
__wrap_malloc will call the real malloc function. You may wish to provide a
__real_malloc function as well, so that links without the --wrap option will suc-
ceed. If you do this, you should not put the definition of __real_malloc in the same
file as __wrap_malloc; if you do, the assembler may resolve the call before the linker
has a chance to wrap it to malloc.
 2013 Microchip Technology Inc. DS52106A-page 121

16-Bit Assembler, Linker and Utilities User’s Guide
8.5 OPTIONS THAT CONTROL RUN-TIME INITIALIZATION
Run-time initialization options are:
--data-init

--no-data-init

--handles

--no-handles

--heap size

--pack-data

--no-pack-data

--stack size

--stackguard size

8.5.1 --data-init
Support initialized data. (This is the default.)
Create a special output section named .dinit as a template for the run-time initializa-
tion of data. The C start-up module in libpic30.a interprets this template and copies
initial data values into initialized data sections. Other data sections (such as .bss) are
cleared before the main() function is called. Note that the persistent data section
(.pbss) is not affected by this option.

8.5.2 --no-data-init
Don’t support initialized data.
Suppress the template which is normally created to support run-time initialization of
data. When this option is specified, the linker will select a shorter form of the C start-up
module in libpic30.a. If the application includes data sections which require initial-
ization, a warning message will be generated and the initial data values discarded.
Storage for the data sections will be allocated as usual.

8.5.3 --handles
Support far code pointers. (This is the default.)
Create a special output section named .handles as a jump table for accessing far
code pointers. Entries in the jump table are used only when the address of a code
pointer exceeds 16 bits. The jump table must be loaded in the lowest range of program
memory (as defined in the linker scripts).

8.5.4 --no-handles
Don’t support far code pointers.
Suppress the handle jump table which is normally created to access far code pointers.
The programmer is responsible for making certain that all code pointers can be reached
with a 16 bit address. If this option is specified and the address of a code pointer
exceeds 16 bits, an error is reported.

8.5.5 --heap size
Set heap to size bytes.
Allocate a run-time heap of size bytes for use by C programs. The heap is allocated
from unused data memory. If sufficient memory is unavailable, an error is reported.
DS52106A-page 122 2013 Microchip Technology Inc.

Linker Command Line Interface
8.5.6 --pack-data
Pack initial data values. (This is the default.)
Fill the upper byte of each instruction word in the data initialization template with data.
This option conserves program memory and causes the template to appear as random,
and possibly invalid instructions, if viewed in the disassembler.

8.5.7 --no-pack-data
Don’t pack initial data values.
Fill the upper byte of each instruction word in the data initialization template with 0x0 or
another value specified with --fill-upper. This option consumes additional pro-
gram memory and causes the template to appear as NOP instructions if viewed in the
disassembler (and will be executed as such by the 16-bit device).

8.5.8 --stack size
Set minimum stack to size bytes (default=16).
By default, the linker allocates all unused data memory for the run-time stack. Alterna-
tively, the programmer may allocate the stack by defining a section with the stack attri-
bute. Use this option to ensure that at least a minimum-sized stack is available. The
actual stack size is reported in the link map output file. If the minimum size is not avail-
able, an error is reported. The default minimum stack size does not include a stack
guardband, as described in the next section.

8.5.9 --stackguard size
Set stack guardband to size bytes (default=16).
By default a portion of the physical stack is reserved for a guardband.
The stack guardband ensures that enough stack space is available to process a stack
overflow exception. The default value (16 bytes) was chosen to handle the worst-case
scenario, and guarantees that an exception handler can be invoked. This option can
be used to reserve additional stack space for exception processing, or to reduce the
guardband size, freeing up additional memory for the stack.
 2013 Microchip Technology Inc. DS52106A-page 123

16-Bit Assembler, Linker and Utilities User’s Guide
8.6 OPTIONS THAT CONTROL INFORMATIONAL OUTPUT
Information output options are:
--check-sections

--no-check-sections

--help

--no-warn-mismatch

--report-mem

--trace (-t)

--trace-symbol symbol (-y symbol)

-V

--verbose

--version (-v)

--warn-common

--warn-once

--warn-section-align

8.6.1 --check-sections
Check section addresses for overlaps. (This is the default.)

8.6.2 --no-check-sections
Do not check section addresses for overlaps.

8.6.3 --help
Print option help.
Print a summary of the command line options on the standard output and exit.

8.6.4 --no-warn-mismatch
Do not warn about mismatched input files.
Normally xc16-ld will give an error if you try to link together input files that are mis-
matched for some reason, perhaps because they have been compiled for different pro-
cessors or for different endiannesses. This option tells xc16-ld that it should silently
permit such possible errors. This option should only be used with care in cases when
you have taken some special action that ensures that the linker errors are
inappropriate.

8.6.5 --report-mem
Print a memory usage report.
Print a summary of memory usage to standard output during the link. This report also
appears in the link map.

8.6.6 --trace (-t)
Trace file.
Print the names of the input files as xc16-ld processes them.

Note: This option does not apply to library files specified with -l.
DS52106A-page 124 2013 Microchip Technology Inc.

Linker Command Line Interface
8.6.7 --trace-symbol symbol (-y symbol)
Trace mentions of symbol.
Print the name of each linked file in which symbol appears. This option may be given
any number of times. On many systems, it is necessary to prep-end an underscore to
the symbol. This option is useful when you have an undefined symbol in your link but
do not know where the reference is coming from.

8.6.8 -V
Print version and other information.

8.6.9 --verbose
Output lots of information during link.
Display the version number for xc16-ld. Display the input files that can and cannot be
opened. Display the linker script if using a default built-in script.

8.6.10 --version (-v)
Print version information.

8.6.11 --warn-common
Warn about duplicate common symbols.
Warn when a common symbol is combined with another common symbol or with a
symbol definition. Unix linkers allow this somewhat sloppy practice, but linkers on some
other operating systems do not. This option allows you to find potential problems from
combining global symbols. Unfortunately, some C libraries use this practice, so you
may get some warnings about symbols in the libraries as well as in your programs.
There are three kinds of global symbols, illustrated here with C examples:
A definition, which goes in the initialized data section of the output file.
int i = 1;

An undefined reference, which does not allocate space. There must be either a
definition or a common symbol for the variable somewhere.
extern int i;

A common symbol. If there are only (one or more) common symbols for a variable, it
goes in the uninitialized data area of the output file.
int i;

The linker merges multiple common symbols for the same variable into a single sym-
bol. If they are of different sizes, it picks the largest size. The linker turns a common
symbol into a declaration if there is a definition of the same variable.
The --warn-common option can produce five kinds of warnings. Each warning con-
sists of a pair of lines: the first describes the symbol just encountered, and the second
describes the previous symbol encountered with the same name. One or both of the
two symbols will be a common symbol.
Turning a common symbol into a reference, because there is already a definition for the
symbol.
file(section): warning: common of ‘symbol’ overridden by definition
file(section): warning: defined here
 2013 Microchip Technology Inc. DS52106A-page 125

16-Bit Assembler, Linker and Utilities User’s Guide
Turning a common symbol into a reference, because a later definition for the symbol is
encountered. This is the same as the previous case, except that the symbols are
encountered in a different order.
file(section): warning: definition of ‘symbol’ overriding common
file(section): warning: common is here

Merging a common symbol with a previous same-sized common symbol.
file(section): warning: multiple common of ‘symbol’
file(section): warning: previous common is here

Merging a common symbol with a previous larger common symbol.
file(section): warning: common of ‘symbol’ overridden by larger common
file(section): warning: larger common is here

Merging a common symbol with a previous smaller common symbol. This is the same
as the previous case, except that the symbols are encountered in a different order.
file(section): warning: common of ‘symbol’ overriding smaller common
file(section): warning: smaller common is here

8.6.12 --warn-once
Warn only once per undefined symbol.
Only warn once for each undefined symbol, rather than once per module that refers to
it.

8.6.13 --warn-section-align
Warn if start of section changes due to alignment.
Warn if the address of an output section is changed because of alignment. This means
a gap has been introduced into the (normally sequential) allocation of memory.
Typically, an input section will set the alignment. The address will only be changed if it
is not explicitly specified; that is, if the SECTIONS command does not specify a start
address for the section.
DS52106A-page 126 2013 Microchip Technology Inc.

Linker Command Line Interface
8.7 OPTIONS THAT MODIFY THE LINK MAP OUTPUT
Link map output modifying options are:
--cref

--print-map (-M)

-Map file

8.7.1 --cref
Output cross-reference table.
If a linker map file is being generated, the cross-reference table is printed to the map
file. Otherwise, it is printed on the standard output. The format of the table is intention-
ally simple, so that a script may easily process it, if necessary. The symbols are printed
out, sorted by name. For each symbol, a list of file names is given. If the symbol is
defined, the first file listed is the location of the definition. The remaining files contain
references to the symbol.

8.7.2 --print-map (-M)
Print map file on standard output.
Print a link map to the standard output. A link map provides information about the link,
including the following:
Where object files and symbols are mapped into memory.
How common symbols are allocated.
All archive members included in the link, with a mention of the symbol which caused
the archive member to be brought in.

8.7.3 -Map file
Write a map file.
Print a link map to the file file. See the description of the --print-map (-M)
option.
 2013 Microchip Technology Inc. DS52106A-page 127

16-Bit Assembler, Linker and Utilities User’s Guide
8.8 OPTIONS THAT SPECIFY CODEGUARD™ SECURITY FEATURES
Three linker options are related to CodeGuard Security:
--boot LIST – Specify options for the boot segment
--secure LIST – Specify options for the secure segment
--general LIST – Specify options for the general segment

LIST may include a single segment option or several segment options separated by
colons. Multiple instances of boot, secure, or general options are accepted and will
be combined. An optional equals sign (=) may precede LIST.

8.8.1 CodeGuard Security Segment Options
The following segment options correspond to specific CodeGuard Security settings as
described in the CodeGuard Security documentation. The linker will validate that any
CodeGuard Security option(s) specified are supported by the target device. An error
will be reported if the target device does not support a particular option. Valid options
settings will be encoded as configuration words for the target device.
For MPLAB X IDE, these options will appear in the Project Properties window under
xc16-ld options. For MPLAB IDE v8, these options will appear in the Build Options dia-
log as a sub-category of the XC16 LINK tab. They will be passed to the linker via com-
mand line.

TABLE 8-1: CODEGUARD™ SECURITY SEGMENT OPTIONS

Option
Segment(s) Supported

boot secure general

no_ram ** X X

small_ram X X

medium_ram X X

large_ram X X

no_flash ** X X

small_flash_std X X

medium_flash_std X X

large_flash_std X X

small_flash_high X X

medium_flash_high X X

large_flash_high X X

no_eeprom ** X X

eeprom X

small_eeprom X

medium_eeprom X

large_eeprom X

no_write_protect ** X X X

write_protect X X X

no_code_protect ** X

code_protect_std X

code_protect_high X

** default setting
DS52106A-page 128 2013 Microchip Technology Inc.

Linker Command Line Interface
EXAMPLE 8-1: CODEGUARD SECURITY SEGMENT OPTIONS

--boot small_flash_std
--boot=small_ram:medium_flash_std:eeprom

--secure no_ram:small_flash_std
--secure=medium_ram:large_flash_high

--general write_protect
--general=no_write_protect:code_protect_high

8.8.2 User-Defined Segment Options
The following segment options are supported for any device. They enable the program-
mer to take advantage of special language features created for CodeGuard Security,
including separately linked application segments and access entry branch tables.
These options do not require CodeGuard Security support in hardware and will not be
encoded as configuration word settings.

EXAMPLE 8-2: USER-DEFINED SEGMENT OPTIONS

--boot flash_size=128
--boot=ram_size=64:flash_size=256

--secure flash_size=256
--secure=ram_size=64:flash_size=256

Note: User-defined segment options should not be combined with CodeGuard
Security options. They are intended for debugging and/or special boot-
loader applications.

TABLE 8-2: USER-DEFINED SEGMENT OPTIONS

Option
Segment(s) Supported

boot secure general

ram_size=nn X X
flash_size=nn X X
nn is a positive integer in decimal or hex format
 2013 Microchip Technology Inc. DS52106A-page 129

16-Bit Assembler, Linker and Utilities User’s Guide
8.9 OPTIONS THAT CONTROL THE PREPROCESSOR
Linker scripts are passed to the C preprocessor before actual linking begins. This pro-
vides an opportunity to substitute macro definitions and to include conditional blocks of
code. The C preprocessor is well-known by programmers and documentation is widely
available.
Linker preprocessor options are listed in the sections below.

8.9.1 -D<macro>[=value]
Define a macro (with optional value) to the preprocessor.
Macros can be used to substitute literal values into a script, such as for the origin or
length of memory regions. They can also be used to select conditional blocks of code
using directives such as #ifdef, #endif.

8.9.2 --no-cpp
Do not preprocess linker scripts.
Linker script preprocessing is enabled by default. This option can be used to disable
preprocessing.
Care should be used in selecting this option. If a linker script requires preprocessing
(such as for conditional blocks of text), using this option will cause a processing error.

8.9.3 --save-gld
Save preprocessed linker scripts.
By default the result of preprocessing is a temporary file. This option can be used to
save the preprocessed linker script. A filename is automatically generated based on
the linker script filename.
DS52106A-page 130 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 9. Linker Scripts
9.1 INTRODUCTION
Linker scripts are used to control MPLAB XC16 Object Linker functions. You can cus-
tomize your linker script for specialized control of the linker.

9.2 HIGHLIGHTS
Topics covered in this chapter are:
• Overview of Linker Scripts
• Command Line Information
• Contents of a Linker Script
• Creating a Custom Linker Script
• Linker Script Command Language
• Expressions in Linker Scripts

9.3 OVERVIEW OF LINKER SCRIPTS
Linker scripts control all aspects of the link process, including:
• allocation of data memory and program memory
• mapping of sections from input files into the output file
• construction of special data structures (such as interrupt vector tables)
• assignment of absolute SFR addresses for the target device

9.3.1 Contents
Linker scripts are text files that contain a series of commands. Each command is either
a keyword, possibly followed by arguments, or an assignment to a symbol. Comments
may be included just as in C, delimited by /* and */. As in C, comments are syntacti-
cally equivalent to white space. Unlike C, white space is significant and is often not
permitted between syntax elements.

9.3.2 File Names and Locations
The 16-bit Language Tools include a set of standard linker scripts: device-specific linker
scripts (e.g., p30f3014.gld) and one generic linker script (p30sim.gld).
Standard linker script files are provided for each device and are located under:
Install_Dir/support/DeviceFamily/gld

where Install_Dir in the installation directory for the MPLAB XC16 C compiler and
DeviceFamily is be the name of the device family (e.g., dsPIC33EP) or generic.
 2013 Microchip Technology Inc. DS52106A-page 131

16-Bit Assembler, Linker and Utilities User’s Guide
9.4 COMMAND LINE INFORMATION
Linker scripts are specified on the command line using either the -T option or the
--script option (see Section 8.4 “Options that Control Output File Creation”):
xc16-ld -o output.cof output.o --script
 ..\support\dsPIC30F\gld\p30f3014.gld

If the linker is invoked through xc16-gcc, add the -Wl, prefix to allow the option to be
passed to the linker:
xc16-gcc -o output.cof output.s -Wl,--script,
 ..\support\dsPIC30F\gld\p30f3014.gld

If no linker script is specified, the linker will use an internal version known as the default
linker script. The default linker script has memory range information and SFR defini-
tions that are appropriate for the command line simulator (mdb). The default linker
script can be examined by invoking the linker with the --verbose option:
xc16-ld --verbose

Linker scripts are located by using the library search path which, by default, includes
the standard directories provided with the install.

9.5 CONTENTS OF A LINKER SCRIPT
In the next several sections, a device-specific linker script for the dsPIC30F3014 will be
examined. The linker script contains the following categories of information:
• Processor and Startup Modules
• Memory Region Information
• Base Memory Addresses
• Input/Output Section Map
• Interrupt Vector Tables
• SFR Addresses

9.5.1 Processor and Startup Modules
The first several lines of a linker script define the processor and startup modules:
/*
** Linker Script for 30f3014
*/

OUTPUT_ARCH("30F3014")
CRT0_STARTUP(crt0_standard.o)
CRT1_STARTUP(crt1_standard.o)

OPTIONAL(-lp30F3014)

The OUTPUT_ARCH command specifies the target processor. The CRTn_STARTUP
commands specify two C run-time startup modules to be loaded from archives. The
linker will select one of these based on whether data initialization has been enabled.
The OPTIONAL command specifies a device-specific library that should be opened if
available. If the library file cannot be found, the link will continue without error unless
there are unresolved references in the application.

Note: The default linker script is functionally equivalent to the generic linker script
p30sim.gld.
DS52106A-page 132 2013 Microchip Technology Inc.

Linker Scripts
9.5.2 Memory Region Information
The next section of a linker script defines the various memory regions for the target
device using the MEMORY command.
For the dsPIC30F3014, several memory regions are defined:
/*
** Memory Regions
*/
MEMORY
{
 data : ORIGIN = 0x800, LENGTH = 2048
 program : ORIGIN = 0x100, LENGTH = ((8K * 2) - 0x100)
 reset : ORIGIN = 0, LENGTH = (4)
 ivt : ORIGIN = 0x04, LENGTH = (62 * 2)
 aivt : ORIGIN = 0x84, LENGTH = (62 * 2)
 __FOSC : ORIGIN = 0xF80000, LENGTH = (2)
 __FWDT : ORIGIN = 0xF80002, LENGTH = (2)
 __FBORPOR : ORIGIN = 0xF80004, LENGTH = (2)
 __CONFIG4 : ORIGIN = 0xF80006, LENGTH = (2)
 __CONFIG5 : ORIGIN = 0xF80008, LENGTH = (2)
 __FGS : ORIGIN = 0xF8000A, LENGTH = (2)
 __FUID0 : ORIGIN = 0x8005C0, LENGTH = (2)
 __FUID1 : ORIGIN = 0x8005C2, LENGTH = (2)
 __FUID2 : ORIGIN = 0x8005C4, LENGTH = (2)
 __FUID3 : ORIGIN = 0x8005C6, LENGTH = (2)
 eedata : ORIGIN = 0x7FFC00, LENGTH = (1024)
}

Each memory region is range-checked as sections are added during the link process.
If any region overflows, a link error is reported.
MEMORY regions are:
• Data Region
• Program Region
• Reset, Ivt and Aivt Regions
• Fuse Configuration Regions
• Unit ID Regions
• EEDATA Memory Region

9.5.2.1 DATA REGION

data : ORIGIN = 0x800, LENGTH = 2048

The data region corresponds to the RAM memory of the dsPIC30F3014 device, and is
used for both initialized and uninitialized variables. The starting address of region data
is 0x800. This is the first usable location in RAM, after the space reserved for
memory-mapped SFRs.
 2013 Microchip Technology Inc. DS52106A-page 133

16-Bit Assembler, Linker and Utilities User’s Guide
9.5.2.2 PROGRAM REGION

program : ORIGIN = 0x100, LENGTH = ((8K * 2) - 0x100)

The program region corresponds to the Flash memory of the dsPIC30F3014 device
that is available for user code, library code and constants. The starting address of
region program is 0x100. This is the first location in Flash that is available for general
use. Addresses below 0x100 are reserved for the Reset instruction and the two vector
tables.
The length specification of the program region deserves particular emphasis. The
(8K * 2) portion indicates that the dsPIC30F3014 has 8K instruction words of Flash
memory, and that each instruction word is 2 address units wide. The - 0x100 portion
reflects the fact that some of the Flash is reserved for the Reset instruction and vector
tables.

9.5.2.3 RESET, IVT AND AIVT REGIONS

reset : ORIGIN = 0, LENGTH = (4)

The Reset region corresponds to the 16-bit Reset instruction at address 0 in program
memory. The Reset region is 4 address units, or 2 instruction words, long. This region
always contains a GOTO instruction that is executed upon device reset. The GOTO
instruction is encoded by data commands in the section map (see Section 9.5.4.1).
ivt : ORIGIN = 0x04, LENGTH = (62 * 2)
aivt : ORIGIN = 0x84, LENGTH = (62 * 2)

The ivt and aivt regions correspond to the interrupt vector table and alternate inter-
rupt vector table, respectively. Each interrupt vector table contains 62 entries, each is
2 address units in length. Each entry represents a word of program memory, which con-
tains a 24-bit address. The linker initializes the vector tables with appropriate data,
according to standard naming conventions.
Regions reset, ivt and aivt comprise the low address portion of Flash memory that
is not available for user programs.

9.5.2.4 FUSE CONFIGURATION REGIONS

 __FOSC : ORIGIN = 0xF80000, LENGTH = (2)
 __FWDT : ORIGIN = 0xF80002, LENGTH = (2)
 __FBORPOR : ORIGIN = 0xF80004, LENGTH = (2)
 __CONFIG4 : ORIGIN = 0xF80006, LENGTH = (2)
 __CONFIG5 : ORIGIN = 0xF80008, LENGTH = (2)
 __FGS : ORIGIN = 0xF8000A, LENGTH = (2)

These regions correspond to the dsPIC30F3014 configuration registers.
Each fuse configuration region is exactly one instruction word long. If sections are
defined in the application source code with the standard naming convention, the sec-
tion contents will be written into the appropriate configuration register(s). Otherwise,
the registers are left uninitialized. If more than one value is defined for any configuration
region, a link error will be reported.

Note: Instruction words in the 16-bit devices are 24 bits, or 3 bytes, wide. How-
ever, the PC increments by 2 for each instruction word for compatibility with
data memory. Address and lengths in program memory are expressed in
PC units.
DS52106A-page 134 2013 Microchip Technology Inc.

Linker Scripts
9.5.2.5 UNIT ID REGIONS

 __FUID0 : ORIGIN = 0x8005C0, LENGTH = (2)
 __FUID1 : ORIGIN = 0x8005C2, LENGTH = (2)
 __FUID2 : ORIGIN = 0x8005C4, LENGTH = (2)
 __FUID3 : ORIGIN = 0x8005C6, LENGTH = (2)

The unit ID regions correspond to locations in program memory that may be
programmed with application-specific information.

9.5.2.6 EEDATA MEMORY REGION

eedata : ORIGIN = 0x7FFC00, LENGTH = (1024)

The eedata region corresponds to non-volatile data flash memory located in high
memory. Although located in program memory space, the data flash is organized like
data memory. The total length is 1024 bytes.

9.5.3 Base Memory Addresses
This portion of the linker script defines the base addresses of several output sections
in the application. Each base address is defined as a symbol with the following syntax:
name = value;

The symbols are used to specify load addresses in the section map. For the
dsPIC30F3014, several base memory addresses are defined. Not all of these symbols
are referenced in the section map; some are included for informational purposes.
/*
** Base Memory Addresses - Program Memory
*/
__RESET_BASE = 0; /* Reset Instruction */
__IVT_BASE = 0x04; /* Interrupt Vector Table */
__AIVT_BASE = 0x84; /* Alternate Interrupt Vector Table */
__CODE_BASE = 0x100; /* Handles, User Code, Library Code */

/*
** Base Memory Addresses - Data Memory
*/
__SFR_BASE = 0; /* Memory-mapped SFRs */
__DATA_BASE = 0x800; /* X and General Purpose Data Memory */
__YDATA_BASE = 0x0C00; /* Y Data Memory for DSP Instructions */

9.5.4 Input/Output Section Map
The section map is the heart of the linker script. It defines how input sections are
mapped to output sections. Note that input sections are portions of an application that
are defined in source code, while output sections are created by the linker. Generally,
several input sections may be combined into a single output section.
For example, suppose that an application is comprised of five different functions, and
each function is defined in a separate source file. Together, these source files will pro-
duce five input sections. The linker will combine these input sections into a single out-
put section. Only the output section has an absolute address.
 2013 Microchip Technology Inc. DS52106A-page 135

16-Bit Assembler, Linker and Utilities User’s Guide
If any input or output sections are empty, there is no penalty or storage cost for the
linked application. Most applications will use only a few of the many sections that
appear in the section map.
• Output Section .reset
• Output Section .text
• User-Defined Section in Program Memory
• Output Sections in Configuration Memory
• User-Defined Section in Data Flash Memory
• In-Circuit Debugger Memory
• User-Defined Section in Data Memory

9.5.4.1 OUTPUT SECTION .reset

Section .reset contains a GOTO instruction, created at link time, from output section
data commands:
/*
** Reset Instruction
*/
.reset __RESET_BASE :
 {
 SHORT(ABSOLUTE(__reset));
 SHORT(0x04);
 SHORT((ABSOLUTE(__reset) >> 16) & 0x7F);
 SHORT(0);
 } >reset

Each SHORT() data command causes a 2 byte value to be included. There are two
expressions which include the symbol __reset, which by convention is the first func-
tion invoked after a device reset. Each expression calculates a portion of the address
of the Reset function. These declarations encode a 24-bit GOTO instruction, which is
two instruction words long.
The ABSOLUTE() function specifies the final value of a program symbol after linking.
If this function were omitted, a relative (before-linking) value of the program symbol
would be used.
The >reset portion of this definition indicates that this section should be allocated in
the Reset memory region.

9.5.4.2 OUTPUT SECTION .text

Section .text collects executable code from all of the application’s input files.
/*
** User Code and Library Code
*/
.text :
 {
 *(.init);
 *(.user_init);
 keep(*(.handle));
 keep(*(.isr));
 *(.libc) *(.libm) *(.libdsp); /* keep together in this order */
 (.lib);
 } >program
DS52106A-page 136 2013 Microchip Technology Inc.

Linker Scripts
Several different input sections are collected into one output section. This was done to
ensure the order in which the input sections are loaded.

The input section .text is not explicitly mapped so that the linker may distribute code
around PSV sections in order to more successfully satisfy PSV address requirements.

9.5.4.3 USER-DEFINED SECTION IN PROGRAM MEMORY

A stub is included for user-defined output sections in program memory. This stub may
be edited as needed to support the application requirements. Once a standard linker
script has been modified, it is called a “custom linker script.” In practice, it is often sim-
pler to use section attributes in source code to locate user-defined sections in program
memory. See Chapter 11. “Linker Examples” for more information.
/*
** User-Defined Section in Program Memory
**
** note: can specify an address using
** the following syntax:
**
** usercode 0x1234 :
** {
** *(usercode);
** } >program
*/
usercode :
 {
 *(usercode);
 } >program

An exact, absolute starting address can be specified, if necessary. If the address is
greater than the current location counter, the intervening memory space will be skipped
and filled with zeros. If the address is less than the current location counter, a section
overlap will occur. Whenever two output sections occupy the same address range, a
link error will be reported. Overlapping sections in program memory can not be
supported.

TABLE 9-1: SECTION TYPES AND NAMES
Section Type Section Name Description

input .init Contains the startup code that is executed immediately
after device reset. It is positioned first so that its address
may be readily available.

input .user_init Contains a call table for user initialization functions.
input .handle Used for function pointers and is loaded first at low

addresses. keep is required to prevent -gcc-sections
from deleting this code.

input .isr Used for interrupt service functions. Again, keep is used
to preserve the code.

library .libc
.libm
.libdsp

These sections must be grouped together to ensure local-
ity of reference.

library .lib* Collects other libraries, such as the peripheral libraries
(which are allocated in section .libperi).

Note: Each memory region has its own location counter.
 2013 Microchip Technology Inc. DS52106A-page 137

16-Bit Assembler, Linker and Utilities User’s Guide
9.5.4.4 USER-DEFINED CONSTANTS IN PROGRAM MEMORY

A comment block is included that describes how to define sections that will be
accessed via the PSV window or the EDS window. Such sections are defined with the
psv attribute. The syntax used to represent a PSV section address is different from
other type sections. In particular, the Load Memory Address (LMA) should be defined,
not the Virtual Memory Address (VMA). The LMA is unique and describes where the
section is located in program memory. The VMA describes a location in the data win-
dow that may be shared by multiple pages of program memory, and is therefore not
unique.
 /*
 ** User-Defined Constants in Program Memory
 **
 ** For PSV-type sections, the Load Memory Address (LMA)
 ** should be specified as follows:
 **
 ** userconst : AT(0x1234)
 ** {
 ** *(userconst);
 ** } >program
 **
 ** Note that mapping PSV sections in linker scripts
 ** is not generally recommended.
 **
 ** Because of page alignment restrictions, memory is
 ** often used more efficiently when PSV sections
 ** do not appear in the linker script.
 **
 ** For more information on memory allocation,
 ** please refer to chapter 10, "Linker Processing"
 ** in the Assembler, Linker manual (DS51317).
 */

As noted, defining PSV-type sections in the linker script is not generally recommended.
This is because sections that appear in the linker script are allocated sequentially, and
PSV sections have significant page alignment restrictions. For more information on
memory allocation and PSV sections, see Chapter 10. “Linker Processing”.
DS52106A-page 138 2013 Microchip Technology Inc.

Linker Scripts
9.5.4.5 OUTPUT SECTIONS IN CONFIGURATION MEMORY

Several sections are defined that match the Fuse Configuration memory regions:
/*
** Configuration Fuses
*/
__FOSC :
 { *(__FOSC.sec) } >__FOSC
__FWDT :
 { *(__FWDT.sec) } >__FWDT
__FBORPOR :
 { *(__FBORPOR.sec) } >__FBORPOR
__CONFIG4 :
 { *(__CONFIG4.sec) } >__CONFIG4
__CONFIG5 :
 { *(__CONFIG5.sec) } >__CONFIG5
__FGS :
 { *(__FGS.sec) } >__FGS
__FICD :
 { *(__FICD.sec) } >__FICD
__FUID0 :
 { *(__FUID0.sec) } >__FUID0
__FUID1 :
 { *(__FUID1.sec) } >__FUID1
__FUID2 :
 { *(__FUID2.sec) } >__FUID2
__FUID3 :
 { *(__FUID3.sec) } >__FUID3

The Configuration Fuse sections are supported by macros defined in the 16-bit
device-specific include files in support/inc and the C header files in support/h.
For example, to disable the Watchdog Timer in assembly language:
.include "p30f6014.inc"
config __FWDT, WDT_OFF

The equivalent operation in C would be:
#include "p30f6014.h"
_FWDT(WDT_OFF);

Configuration macros have the effect of changing the current section. In C, the macro
should be used outside of any function. In assembly language, the macro should be
followed by a .section directive.
 2013 Microchip Technology Inc. DS52106A-page 139

16-Bit Assembler, Linker and Utilities User’s Guide
9.5.4.6 USER-DEFINED SECTION IN DATA FLASH MEMORY

A stub is included for user-defined output sections in EEDATA memory. This stub may
be edited as needed to support the application requirements. Once a standard linker
script has been modified, it is called a “custom linker script.” In practice, it is often sim-
pler to use section attributes in source code to locate user-defined sections in data flash
memory. See Chapter 11. “Linker Examples” for more information.
 /*
 ** User-Defined Section in Data Flash Memory
 **
 ** note: can specify an address using
 ** the following syntax:
 **
 ** eedata 0x7FF100 :
 ** {
 ** *(eedata);
 ** } >eedata
 */
 eedata :
 {
 *(eedata);
 } >eedata

An exact, absolute starting address can be specified, if necessary. If the address is
greater than the current location counter, the intervening memory will be skipped and
filled with zeros. If the address is less than the current location counter, a section over-
lap will occur. Whenever two output sections occupy the same address range, a link
error will reported. Overlapping sections in EEDATA memory can not be supported.

Note: Each memory region has its own location counter.
DS52106A-page 140 2013 Microchip Technology Inc.

Linker Scripts
9.5.4.7 IN-CIRCUIT DEBUGGER MEMORY

An in-circuit debugger/emulator requires a portion of data memory for its variables and
stack. Since the debugger is linked separately and in advance of user applications, the
block of memory must be located at a fixed address and dedicated for use by the
debugger.
/*
** ICD Debug Exec
**
** This section provides optional storage for
** the in-circuit debugger. Define a global symbol
** named __ICD2RAM to enable the debugger. This section
** must be loaded at data address 0x800.
*/
.icd __DATA_BASE (NOLOAD):
 {
 . += (DEFINED (__ICD2RAM) ? 0x50 : 0);
 } > data

Section .icd is designed to optionally reserve memory for the in-circuit debug-
ger/emulator. If global symbol __ICD2RAM is defined at link time, 0x50 bytes of mem-
ory at address 0x800 will be reserved. The (NOLOAD) attribute indicates that no initial
values need to be loaded for this section. The name for this symbol was created when
there was only one in-circuit debugger, the MPLAB ICD 2.

9.5.4.8 USER-DEFINED SECTION IN DATA MEMORY

A stub is included for user-defined output sections in data memory. This stub may be
edited as needed to support the application requirements. Once a standard linker script
has been modified, it is called a “custom linker script.” In practice, it is often simpler to
use section attributes in source code to locate user-defined sections in data memory.
See Chapter 11. “Linker Examples” for more information.
/*
** User-Defined Section in Data Memory
**
** note: can specify an address using
** the following syntax:
**
** userdata 0x1234 :
** {
** *(userdata);
** } >data
*/
userdata :
 {
 *(userdata);
 } >data

An exact, absolute starting address can be specified, if necessary. If the address is
greater than the current location counter, the intervening memory space will be skipped
and filled with zeros. If the address is less than the current location counter, a section
overlap will occur. Whenever two output sections occupy the same address range, a
link error will be reported. Overlapping sections in data memory cannot be supported.
 2013 Microchip Technology Inc. DS52106A-page 141

16-Bit Assembler, Linker and Utilities User’s Guide
9.5.5 Interrupt Vector Tables
The primary and alternate interrupt vector tables are defined in a second section map,
near the end of the standard linker script:
/*
** Section Map for Interrupt Vector Tables
*/
SECTIONS
{

/*
** Primary Interrupt Vector Table
*/
.ivt __IVT_BASE :
 {
 LONG(DEFINED(__ReservedTrap0) ? ABSOLUTE(__ReservedTrap0) :
 ABSOLUTE(__DefaultInterrupt));
 LONG(DEFINED(__OscillatorFail) ? ABSOLUTE(__OscillatorFail) :
 ABSOLUTE(__DefaultInterrupt));
 LONG(DEFINED(__AddressError) ? ABSOLUTE(__AddressError) :
 ABSOLUTE(__DefaultInterrupt));
 :
 :
 LONG(DEFINED(__Interrupt53) ? ABSOLUTE(__Interrupt53) :
 ABSOLUTE(__DefaultInterrupt));
 } >ivt

The vector table is defined as a series of LONG() data commands. Each vector table
entry is 4 bytes in length (3 bytes for a program memory address plus an unused phan-
tom byte). The data commands include an expression using the DEFINED() function
and the ? operator. A typical entry may be interpreted as follows:
If symbol “__OscillatorFail” is defined, insert the absolute address of that symbol. Oth-
erwise, insert the absolute address of symbol “__DefaultInterrupt”.
By convention, a function that will be installed as the second interrupt vector should
have the name __OscillatorFail. If such a function is included in the link, its
address is loaded into the entry. If the function is not included, the address of the default
interrupt handler is loaded instead. If the application has not provided a default interrupt
handler (i.e., a function with the name __DefaultInterrupt), the linker will gener-
ate one automatically. The simplest default interrupt handler is a Reset instruction.

Note: The programmer must insure that functions installed in interrupt vector
tables conform to the architectural requirements of interrupt service rou-
tines.
DS52106A-page 142 2013 Microchip Technology Inc.

Linker Scripts
The contents of the alternate interrupt vector table are defined as follows:
/*
** Alternate Interrupt Vector Table
*/
.aivt __AIVT_BASE :
 {
 LONG(DEFINED(__AltReservedTrap0) ? ABSOLUTE(__AltReservedTrap0)
:
 (DEFINED(__ReservedTrap0) ? ABSOLUTE(__ReservedTrap0)
:
 ABSOLUTE(__DefaultInterrupt)));
 LONG(DEFINED(__AltOscillatorFail) ? ABSOLUTE(__AltOscillatorFail)
:
 (DEFINED(__OscillatorFail) ? ABSOLUTE(__OscillatorFail)
:
 ABSOLUTE(__DefaultInterrupt)));
 LONG(DEFINED(__AltAddressError) ? ABSOLUTE(__AltAddressError)
:
 (DEFINED(__AddressError) ? ABSOLUTE(__AddressError)
:
 ABSOLUTE(__DefaultInterrupt)));
 :
 :
 LONG(DEFINED(__AltInterrupt53) ? ABSOLUTE(__AltInterrupt53)
:
 (DEFINED(__Interrupt53) ? ABSOLUTE(__Interrupt53)
:
 ABSOLUTE(__DefaultInterrupt)));
 } >aivt

The syntax of the alternate interrupt vector table is similar to the primary, except for an
additional expression that causes each alternate table entry to default to the corre-
sponding primary table entry.

9.5.6 SFR Addresses
Absolute addresses for the SFRs are defined as a series of symbol definitions:
**==
=
**
** dsPIC Core Register Definitions
**
**===*
/
 WREG0 = 0x0000;
_WREG0 = 0x0000;
 WREG1 = 0x0002;
_WREG1 = 0x0002;
:
:

Two versions of each SFR address are included, with and without a leading under-
score. This is to enable both C and assembly language programmers to refer to the
SFR using the same name. By convention, the C compiler adds a leading underscore
to every identifier.

Note: If identifiers in a C or assembly program are defined with the same names
as SFRs, multiple definition linker errors will result.
 2013 Microchip Technology Inc. DS52106A-page 143

16-Bit Assembler, Linker and Utilities User’s Guide
9.6 CREATING A CUSTOM LINKER SCRIPT
The standard 16-bit linker scripts are general purpose and will satisfy the demands of
most applications. However, occasions may arise where a custom linker script is
required.
To create a custom linker script, start with a copy of the standard linker script that is
appropriate for the target device. For example, to customize a linker script for the
dsPIC30F3014 device, start with a copy of p30f3014.gld.
Customizing a standard linker script will usually involve editing sections or commands
that are already present. For example, stubs for user-defined sections in both data
memory and program memory are included. These stubs may be renamed and/or cus-
tomized with absolute addresses if required.
It is recommended that unused sections be retained in a custom linker script, since
unused sections will not impact application memory usage. If a section must be
removed for a custom script, C style comments can be used to disable it.

9.7 LINKER SCRIPT COMMAND LANGUAGE
Linker scripts are text files that contain a series of commands. Each command is either
a keyword (possibly followed by arguments) or an assignment to a symbol. Multiple
commands may be separated using semicolons. White space is generally ignored.
Strings such as file or format names can normally be entered directly. If the file name
contains a character, such as a comma, which would otherwise serve to separate file
names, the file name may be specified in double quotes. There is no way to use a dou-
ble quote character in a file name.
Comments may be included just as in C, delimited by /* and */. As in C, comments
are syntactically equivalent to white space.
• Basic Linker Script Concepts
• Commands Dealing with Files
• Assigning Values to Symbols
• MEMORY Command
• SECTIONS Command
• Other Linker Script Commands

9.7.1 Basic Linker Script Concepts
The linker combines input files into a single output file. The output file and each input
file are in a special data format known as an object file format. Each file is called an
object file. Each object file has, among other things, a list of sections. A section in an
input file is called an input section; similarly, a section in the output file is an output sec-
tion.
Each section in an object file has a name and a size. Most sections also have an asso-
ciated block of data, known as the section contents. A section may be marked as load-
able, which means that the contents should be loaded into memory when the output file
is run. A section with no contents may be allocatable (which means that an area in
memory should be set aside), but nothing in particular should be loaded there (in some
cases, this memory must be zeroed out).
DS52106A-page 144 2013 Microchip Technology Inc.

Linker Scripts
Every loadable or allocatable output section has two addresses. The first is the VMA,
or virtual memory address. This is the address the section will have when the output
file is run. The second is the LMA, or load memory address. This is the address at
which the section will be loaded. In most cases, the two addresses will be the same.
An example of when they might be different is when a section is intended for use in the
PSV window. In this case, the program memory address would be the LMA, and the
data memory address would be the VMA.
The sections in an object file can be viewed by using the xc16-objdump program with
the -h option.
Every object file also has a list of symbols, known as the symbol table. A symbol may
be defined or undefined. Each symbol has a name, and each defined symbol has an
address, among other information. If a C or C++ program is compiled into an object file,
a defined symbol will be created for every defined function and global or static variable.
Every undefined function or global variable which is referenced in the input file will
become an undefined symbol.
Symbols in an object file can be viewed by using the xc16-nm program, or by using
the xc16-objdump program with the -t option.

9.7.2 Commands Dealing with Files
Several linker script commands deal with files.
CRT0_STARTUP(object file)

This command identifies which primary startup module should be loaded from the com-
piler libraries. The primary startup module defines reserved symbol __resetPRI and
is responsible for initializing the C runtime environment. Multiple versions of this mod-
ule exist in order to support architectural differences between device families. Although
the linker expects to find this command in every linker script, a default startup module
will be selected if the command is missing (as might be the case with custom linker
scripts in legacy projects.)
CRT1_STARTUP(object file)

This command identifies which alternate startup module should be loaded from the
compiler libraries. The alternate startup module defines reserved symbol __resetALT
and is responsible for initializing the C runtime environment without data initialization.
Multiple versions of this module exist in order to support architectural differences
between device families. Although the linker expects to find this command in every
linker script, a default startup module will be selected if the command is missing (as
might be the case with custom linker scripts in legacy projects.)
INCLUDE filename

Include the linker script filename at this point. The file will be searched for in the current
directory, and in any directory specified with the -L option. Calls to INCLUDE may be
nested up to 10 levels deep.
INPUT(file, file, ...)
INPUT(file file ...)

The INPUT command directs the linker to include the named files in the link, as though
they were named on the command line. The linker will first try to open the file in the
current directory. If it is not found, the linker will search through the archive library
search path. See the description of -L in Section 8.4.17 “--library-path <dir>
(-L <dir>)”.
If INPUT (-lfile) is used, xc16-ld will transform the name to libfile.a, as with
the command line argument -l.
 2013 Microchip Technology Inc. DS52106A-page 145

16-Bit Assembler, Linker and Utilities User’s Guide
When the INPUT command appears in an implicit linker script, the files will be included
in the link at the point at which the linker script file is included. This can affect archive
searching.
GROUP(file, file, ...)
GROUP(file file ...)

The GROUP command is like INPUT, except that the named files should all be archives,
and they are searched repeatedly until no new undefined references are created. See
the description of -(in Section 8.4.2 “-(archives -), --start-group
archives, --end-group”.
OPTIONAL(file, file, ...)
OPTIONAL(file file ...)

The OPTIONAL command is analogous to the INPUT command, except that the named
files are not required for the link to succeed. This is particularly useful for specifying
archives (or libraries) that may or may not be installed with the compiler.
OUTPUT(filename)

The OUTPUT command names the output file. Using OUTPUT(filename) in the linker
script is exactly like using -o filename on the command line (see
Section 8.4.21 “--output file (-o file)”). If both are used, the command line
option takes precedence.
SEARCH_DIR(path)

The SEARCH_DIR command adds path to the list of paths where the linker looks for
archive libraries. Using SEARCH_DIR(path) is exactly like using -L path on the
command line (see Section 8.4.17 “--library-path <dir> (-L <dir>)”). If
both are used, then the linker will search both paths. Paths specified using the
command line option are searched first.
STARTUP(filename)

The STARTUP command is just like the INPUT command, except that filename will
become the first input file to be linked, as though it were specified first on the command
line.

9.7.3 Assigning Values to Symbols
A value may be assigned to a symbol in a linker script. This will define the symbol as a
global symbol.
• Simple Assignments
• PROVIDE Command

9.7.3.1 SIMPLE ASSIGNMENTS

A symbol may be assigned using any of the C assignment operators:
symbol = expression ;
symbol += expression ;
symbol -= expression ;
symbol *= expression ;
symbol /= expression ;
symbol <<= expression ;
symbol >>= expression ;
symbol &= expression ;
symbol |= expression ;

The first case will define symbol to the value of expression. In the other cases, symbol
must already be defined, and the value will be adjusted accordingly.
The special symbol name ‘.’ indicates the location counter. This symbol may only be
used within a SECTIONS command.
DS52106A-page 146 2013 Microchip Technology Inc.

Linker Scripts
The semicolon after expression is required.
Expressions are defined in Section 9.8 “Expressions in Linker Scripts”.
Symbol assignments may appear as commands in their own right, or as statements
within a SECTIONS command, or as part of an output section description in a
SECTIONS command.
The section of the symbol will be set from the section of the expression; for more infor-
mation, see Section 9.8.6 “The Section of an Expression”.
Here is an example showing the three different places that symbol assignments may
be used:

floating_point = 0;
SECTIONS
{
 .text :
 {
 *(.text)
 _etext = .;
 }
 _bdata = (. + 3) & ~ 4;
 .data : { *(.data) }
}

In this example, the symbol floating_point will be defined as zero. The symbol
_etext will be defined as the address following the last .text input section. The sym-
bol _bdata will be defined as the address following the .text output section aligned
upward to a 4-byte boundary.

9.7.3.2 PROVIDE COMMAND

In some cases, it is desirable for a linker script to define a symbol only if it is referenced
and is not defined by any object included in the link. For example, traditional linkers
defined the symbol etext. However, ANSI C requires that etext may be used as a
function name without encountering an error. The PROVIDE keyword may be used to
define a symbol, such as etext, only if it is referenced but not defined. The syntax is
PROVIDE(symbol = expression).
Here is an example of using PROVIDE to define etext:

SECTIONS
{
 .text :
 {
 *(.text)
 _etext = .;
 PROVIDE(etext = .);
 }
}

In this example, if the program defines _etext (with a leading underscore), the linker
will give a multiple definition error. If, on the other hand, the program defines etext
(with no leading underscore), the linker will silently use the definition in the program. If
the program references etext but does not define it, the linker will use the definition
in the linker script.
 2013 Microchip Technology Inc. DS52106A-page 147

16-Bit Assembler, Linker and Utilities User’s Guide
9.7.4 MEMORY Command
The linker’s default configuration permits allocation of all available memory. This can
be overridden by using the MEMORY command.
The MEMORY command describes the location and size of blocks of memory in the tar-
get. It can be used to describe which memory regions may be used by the linker and
which memory regions it must avoid. Sections may then be assigned to particular mem-
ory regions. The linker will set section addresses based on the memory regions and will
warn about regions that become too full. The linker will not shuffle sections around to
fit into the available regions.
The syntax of the MEMORY command is:

MEMORY
 {
 name [(attr)] : ORIGIN = origin, LENGTH = len
 ...
 }

The name is a name used in the linker script to refer to the region. The region name
has no meaning outside of the linker script. Region names are stored in a separate
name space, and will not conflict with symbol names, file names or section names.
Each memory region must have a distinct name.
The attr string is an optional list of attributes associated with the memory region. His-
torically it was used to determine where unmapped sections should be located by the
sequential memory allocator. This capability is no longer used because unmapped sec-
tions are now located by the best-fit allocator. For more information see
Section 10.5 “Linker Allocation”.
The origin is an expression for the start address of the memory region. The expression
must evaluate to a constant before memory allocation is performed, which means that
section relative symbols may not be used. The keyword ORIGIN may be abbreviated
to org or o (but not, for example, ORG).
The len is an expression for the size in bytes of the memory region. As with the origin
expression, the expression must evaluate to a constant before memory allocation is
performed. The keyword LENGTH may be abbreviated to len or l.

Once a memory region is defined, the linker can be directed to place specific output
sections into that memory region by using the >region output section attribute. For
example, to specify a memory region named mem, use >mem in the output section def-
inition. If no address was specified for the output section, the linker will set the address
to the next available address within the memory region. If the combined output sections
directed to a memory region are too large for the region, the linker will issue an error
message.

Note: It is possible to use a preprocessor macro instead of a literal value for the
origin and/or length of a memory region.
DS52106A-page 148 2013 Microchip Technology Inc.

Linker Scripts
9.7.5 SECTIONS Command
The SECTIONS command tells the linker how to map input sections into output sections
and how to place the output sections in memory.
The format of the SECTIONS command is:

SECTIONS
{
 sections-command
 sections-command
 ...
}

Each SECTIONS command may be one of the following:
• an ENTRY command (see Section 9.7.6 “Other Linker Script Commands”)
• a symbol assignment (see Section 9.7.3 “Assigning Values to Symbols”)
• an output section description
• an overlay description
The ENTRY command and symbol assignments are permitted inside the SECTIONS
command for convenience in using the location counter in those commands. This can
also make the linker script easier to understand because those commands can be used
at meaningful points in the layout of the output file.
Output section descriptions and overlay descriptions are described below.
If a SECTIONS command does not appear in the linker script, the linker will place each
input section into an identically named output section in the order that the sections are
first encountered in the input files. If all input sections are present in the first file, for
example, the order of sections in the output file will match the order in the first input file.
The first section will be at address zero.
• Input Section Description
• Input Section Wildcard Patterns
• Input Section for Common Symbols
• Input Section Example
• Output Section Description
• Output Section Address
• Output Section Data
• Output Section Discarding
• Output Section Attributes
• Output Section LMA
• Output Section Region
• Output Section Fill
• Overlay Description
 2013 Microchip Technology Inc. DS52106A-page 149

16-Bit Assembler, Linker and Utilities User’s Guide
9.7.5.1 INPUT SECTION DESCRIPTION

The most common output section command is an input section description.
The input section description is the most basic linker script operation. Output sections
tell the linker how to lay out the program in memory. Input section descriptions tell the
linker how to map the input files into the memory layout.
An input section description consists of a file name optionally followed by a list of sec-
tion names in parentheses.
The file name and the section name may be wildcard patterns, which are described fur-
ther below.
The most common input section description is to include all input sections with a par-
ticular name in the output section. For example, to include all input .text sections,
one would write:

*(.text)

Here the * is a wildcard which matches any file name. To exclude a list of files from
matching the file name wildcard, EXCLUDE_FILE may be used to match all files except
the ones specified in the EXCLUDE_FILE list. For example:

*(EXCLUDE_FILE (*crtend.o *otherfile.o) .ctors)

will cause all .ctors sections from all files except crtend.o and otherfile.o to
be included.
There are two ways to include more than one section:

*(.text .rdata)
*(.text) *(.rdata)

The difference between these is the order in which the .text and .rdata input sec-
tions will appear in the output section. In the first example, they will be intermingled. In
the second example, all .text input sections will appear first, followed by all .rdata
input sections.
A file name can be specified to include sections from a particular file. This would be
useful if one of the files contain special data that needs to be at a particular location in
memory. For example:

data.o(.data)

If a file name is specified without a list of sections, then all sections in the input file will
be included in the output section. This is not commonly done, but it may be useful on
occasion. For example:

data.o

When a file name is specified which does not contain any wild card characters, the
linker will first see if the file name was also specified on the linker command line or in
an INPUT command. If not, the linker will attempt to open the file as an input file, as
though it appeared on the command line. This differs from an INPUT command
because the linker will not search for the file in the archive search path.
DS52106A-page 150 2013 Microchip Technology Inc.

Linker Scripts
9.7.5.2 INPUT SECTION WILDCARD PATTERNS

In an input section description, either the file name or the section name or both may be
wildcard patterns.
The file name of * seen in many examples is a simple wildcard pattern for the file name.
The wildcard patterns are like those used by the UNIX shell.

When a file name is matched with a wildcard, the wildcard characters will not match a
/ character (used to separate directory names on UNIX). A pattern consisting of a sin-
gle * character is an exception; it will always match any file name, whether it contains
a / or not. In a section name, the wildcard characters will match a / character.
File name wildcard patterns only match files which are explicitly specified on the com-
mand line or in an INPUT command. The linker does not search directories to expand
wild cards.
If a file name matches more than one wildcard pattern, or if a file name appears explic-
itly and is also matched by a wildcard pattern, the linker will use the first match in the
linker script. For example, this sequence of input section descriptions is probably in
error, because the data.o rule will not be used:
.data : { *(.data) }
.data1 : { data.o(.data) }

Normally, the linker will place files and sections matched by wild cards in the order in
which they are seen during the link. This can be changed by using the SORT keyword,
which appears before a wildcard pattern in parentheses (e.g., SORT(.text*)). When
the SORT keyword is used, the linker will sort the files or sections into ascending order
by name before placing them in the output file.
To verify where the input sections are going, use the -M linker option to generate a map
file. The map file shows precisely how input sections are mapped to output sections.
This example shows how wildcard patterns might be used to partition files. This linker
script directs the linker to place all .text sections in .text and all .bss sections in
.bss. The linker will place the .data section from all files beginning with an upper
case character in .DATA; for all other files, the linker will place the .data section in
.data.

SECTIONS {
 .text : { *(.text) }
 .DATA : { [A-Z]*(.data) }
 .data : { *(.data) }
 .bss : { *(.bss) }
}

* matches any number of characters
? matches any single character
[chars] matches a single instance of any of the chars; the - character may be

used to specify a range of characters, as in [a-z] to match any lower
case letter

\ quotes the following character
 2013 Microchip Technology Inc. DS52106A-page 151

16-Bit Assembler, Linker and Utilities User’s Guide
9.7.5.3 INPUT SECTION FOR COMMON SYMBOLS

A special notation is needed for common symbols, because common symbols do not
have a particular input section. The linker treats common symbols as though they are
in an input section named COMMON.
File names may be used with the COMMON section just as with any other input sections.
This will place common symbols from a particular input file in one section, while com-
mon symbols from other input files are placed in another section.
In most cases, common symbols in input files will be placed in the .bss section in the
output file. For example:

.bss { *(.bss) *(COMMON) }

If not otherwise specified, common symbols will be assigned to section .bss.

9.7.5.4 INPUT SECTION EXAMPLE

The following example is a complete linker script. It tells the linker to read all of the sec-
tions from file all.o and place them at the start of output section outputa which
starts at location 0x10000. All of section .input1 from file foo.o follows immedi-
ately, in the same output section. All of section .input2 from foo.o goes into output
section outputb, followed by section .input1 from foo1.o. All of the remaining
.input1 and .input2 sections from any files are written to output section outputc.
SECTIONS {
 outputa 0x10000 :
 {
 all.o
 foo.o (.input1)
 }
 outputb :
 {
 foo.o (.input2)
 foo1.o (.input1)
 }
 outputc :
 {
 *(.input1)
 *(.input2)
 }
}

DS52106A-page 152 2013 Microchip Technology Inc.

Linker Scripts
9.7.5.5 OUTPUT SECTION DESCRIPTION

The full description of an output section looks like this:
name [address] [(type)] : [AT(lma)]

 {
 output-section-command
 output-section-command
 ...
 } [>region] [AT>lma_region] [=fillexp]

Most output sections do not use most of the optional section attributes.
The white space around name and address is required. The colon and the curly
braces are also required. The line breaks and other white space are optional.
A section name may consist of any sequence of characters, but a name which contains
any unusual characters such as commas must be quoted.
Each output-section-command may be one of the following:
• a symbol assignment (see Section 9.7.3 “Assigning Values to Symbols”)
• an input section description (see Section 9.7.5.1 “Input Section Description”)
• data values to include directly (see Section 9.7.5.7 “Output Section Data”)

9.7.5.6 OUTPUT SECTION ADDRESS

The address is an expression for the VMA (the virtual memory address) of the output
section. If address is not provided, the linker will set it based on region if present, or
otherwise based on the current value of the location counter.
If address is provided, the address of the output section will be set to precisely that.
If neither address nor region is provided, then the address of the output section will
be set to the current value of the location counter aligned to the alignment requirements
of the output section. The alignment requirement of the output section is the strictest
alignment of any input section contained within the output section.
For example,

.text . : { *(.text) }

and
.text : { *(.text) }

are subtly different. The first will set the address of the .text output section to the cur-
rent value of the location counter. The second will set it to the current value of the loca-
tion counter aligned to the strictest alignment of a .text input section.
The address may be an arbitrary expression (see Section 9.8 “Expressions in Linker
Scripts”). For example, to align the section on a 0x10 byte boundary, so that the low-
est four bits of the section address are zero, the command could look like this:

.text ALIGN(0x10) : { *(.text) }

This works because ALIGN returns the current location counter aligned upward to the
specified value.
Specifying address for a section will change the value of the location counter.
 2013 Microchip Technology Inc. DS52106A-page 153

16-Bit Assembler, Linker and Utilities User’s Guide
9.7.5.7 OUTPUT SECTION DATA

Explicit bytes of data may be inserted into an output section by using BYTE, SHORT,
LONG or QUAD as an output section command. Each keyword is followed by an expres-
sion in parentheses providing the value to store. The value of the expression is stored
at the current value of the location counter.
The BYTE, SHORT, LONG and QUAD commands store one, two, four and eight bytes
(respectively). For example, this command will store the four byte value of the symbol
addr:

LONG(addr)

After storing the bytes, the location counter is incremented by the number of bytes
stored. When using data commands in a program memory section, it is important to
note that the linker considers program memory to be 32-bits wide, even though only 24
bits are physically implemented. Therefore, the most significant 8 bits of a LONG data
value are not loaded into device memory.
Data commands only work inside a section description and not between them, so the
following will produce an error from the linker:

SECTIONS { .text : { *(.text) } LONG(1) .data : { *(.data) } }

whereas this will work:
SECTIONS { .text : { *(.text) ; LONG(1) } .data : { *(.data) } }

The FILL command may be used to set the fill pattern for the current section. It is fol-
lowed by an expression in parentheses. Any otherwise unspecified regions of memory
within the section (for example, gaps left due to the required alignment of input sec-
tions) are filled with the two least significant bytes of the expression, repeated as nec-
essary. A FILL statement covers memory locations after the point at which it occurs in
the section definition; by including more than one FILL statement, different fill patterns
may be used in different parts of an output section.
This example shows how to fill unspecified regions of memory with the value 0x9090:

FILL(0x9090)

The FILL command is similar to the =fillexp output section attribute (see
Section 9.7.5.9 “Output Section Attributes”), but it only affects the part of the sec-
tion following the FILL command, rather than the entire section. If both are used, the
FILL command takes precedence.

9.7.5.8 OUTPUT SECTION DISCARDING

The linker will not create an output section which does not have any contents. This is
for convenience when referring to input sections that may or may not be present in any
of the input files. For example:

.foo { *(.foo) }

will only create a .foo section in the output file if there is a .foo section in at least one
input file.
If anything other than an input section description is used as an output section com-
mand, such as a symbol assignment, then the output section will always be created,
even if there are no matching input sections.
The special output section name /DISCARD/ may be used to discard input sections.
Any input sections which are assigned to an output section named /DISCARD/ are not
included in the output file.
DS52106A-page 154 2013 Microchip Technology Inc.

Linker Scripts
9.7.5.9 OUTPUT SECTION ATTRIBUTES

To review, the full description of an output section is:
name [address] [(type)] : [AT(lma)]
 {
 output-section-command
 output-section-command
 ...
 } [>region] [AT>lma_region] [:phdr :phdr ...] [=fillexp]

name, address and output-section-command have already been described. In
the following sections, the remaining section attributes will be described.

9.7.5.10 OUTPUT SECTION TYPE

Each output section may have a type. The type is a keyword in parentheses. The fol-
lowing types are defined:
NOLOAD
The section should be marked as not loadable, so that it will not be loaded into memory
when the program is run.
DSECT, COPY, INFO, OVERLAY
These type names are supported for backward compatibility, and are rarely used. They
all have the same effect: the section should be marked as not allocatable, so that no
memory is allocated for the section when the program is run.
The linker normally sets the attributes of an output section based on the input sections
which map into it. This can be overridden by using the section type. For example, in the
script sample below, the ROM section is addressed at memory location 0 and does not
need to be loaded when the program is run. The contents of the ROM section will appear
in the linker output file as usual.
SECTIONS {
 ROM 0 (NOLOAD) : { ... }
 ...
}

 2013 Microchip Technology Inc. DS52106A-page 155

16-Bit Assembler, Linker and Utilities User’s Guide
9.7.5.11 OUTPUT SECTION LMA

Every section has a virtual address (VMA) and a load address (LMA). The address
expression which may appear in an output section description sets the VMA.
The linker will normally set the LMA equal to the VMA. This can be changed by using
the AT keyword. The expression lma that follows the AT keyword specifies the load
address of the section. Alternatively, with AT>lma_region expression, a memory
region may be specified for the section’s load address. See Section 9.7.4 “MEMORY
Command”.
This feature is designed to make it easy to build a ROM image. For example, the fol-
lowing linker script creates three output sections: one called .text, which starts at
0x1000, one called .mdata, which is loaded at the end of the .text section even
though its VMA is 0x2000, and one called .bss to hold uninitialized data at address
0x3000. The symbol _data is defined with the value 0x2000, which shows that the
location counter holds the VMA value, not the LMA value.
SECTIONS
 {
 .text 0x1000 : { *(.text) _etext = . ; }
 .mdata 0x2000 :
 AT (ADDR (.text) + SIZEOF (.text))
 { _data = . ; *(.data); _edata = . ; }
 .bss 0x3000 :
 { _bstart = . ; *(.bss) *(COMMON) ; _bend = . ;}
}

The run-time initialization code for use with a program generated with this linker script
would include a function to copy the initialized data from the ROM image to its run-time
address. The initialization function could take advantage of the symbols defined by the
linker script.
It would rarely be necessary to write such a function, however. The 16-bit linker
includes automatic support for the initialization of BSS-type and data-type sections.
Instead of mapping a data section into both program memory and data memory (as this
example implies), the linker creates a special template in program memory which
includes all of the relevant information. See Section 10.8 “Initialized Data” for details.

9.7.5.12 OUTPUT SECTION REGION

A section can be assigned to a previously defined region of memory by using >region.
See Section 9.7.4 “MEMORY Command”.
Here is a simple example:
MEMORY { rom : ORIGIN = 0x1000, LENGTH = 0x1000 }
SECTIONS { ROM : { *(.text) } >rom }

9.7.5.13 OUTPUT SECTION FILL

A fill pattern can be set for an entire section by using =fillexp. fillexp as an
expression. Any otherwise unspecified regions of memory within the output section (for
example, gaps left due to the required alignment of input sections) will be filled with the
two least significant bytes of the value, repeated as necessary.
The fill value can also be changed with a FILL command in the output section com-
mands; see Section 9.7.5.7 “Output Section Data”.
Here is a simple example:

SECTIONS { .text : { *(.text) } =0x9090 }
DS52106A-page 156 2013 Microchip Technology Inc.

Linker Scripts
9.7.5.14 OVERLAY DESCRIPTION

An overlay description provides an easy way to describe sections which are to be
loaded as part of a single memory image but are to be run at the same memory
address. At run time, some sort of overlay manager will copy the overlaid sections in
and out of the run-time memory address as required, perhaps by simply manipulating
addressing bits.
This approach is not suitable for defining sections that will be used with the PSV win-
dow, because the OVERLAY command does not permit individual load addresses to be
specified for each section. Instead, the 16-bit linker provides automatic support for
read-only sections in the PSV window. See Section 10.9 “Read-only Data” for
details.
Overlays are described using the OVERLAY command. The OVERLAY command is
used within a SECTIONS command, like an output section description. The full syntax
of the OVERLAY command is as follows:

OVERLAY [start] : [NOCROSSREFS] [AT (ldaddr)]
 {
 secname1
 {
 output-section-command
 output-section-command
 ...
 } [:phdr...] [=fill]
 secname2
 {
 output-section-command
 output-section-command
 ...
 } [:phdr...] [=fill]
 ...
 } [>region] [:phdr...] [=fill]

Everything is optional except OVERLAY (a keyword), and each section must have a
name (secname1 and secname2 above). The section definitions within the OVERLAY
construct are identical to those within the general SECTIONS construct, except that no
addresses and no memory regions may be defined for sections within an OVERLAY.
The sections are all defined with the same starting address. The load addresses of the
sections are arranged such that they are consecutive in memory starting at the load
address used for the OVERLAY as a whole (as with normal section definitions, the load
address is optional, and defaults to the start address; the start address is also optional,
and defaults to the current value of the location counter).
If the NOCROSSREFS keyword is used, and there are any references among the sec-
tions, the linker will report an error. Since the sections all run at the same address, it
normally does not make sense for one section to refer directly to another.
For each section within the OVERLAY, the linker automatically defines two symbols. The
symbol __load_start_secname is defined as the starting load address of the sec-
tion. The symbol __load_stop_secname is defined as the final load address of the
section. Any characters within secname which are not legal within C identifiers are
removed. C (or assembler) code may use these symbols to move the overlaid sections
around as necessary.
 2013 Microchip Technology Inc. DS52106A-page 157

16-Bit Assembler, Linker and Utilities User’s Guide
At the end of the overlay, the value of the location counter is set to the start address of
the overlay plus the size of the largest section.
Here is an example. Remember that this would appear inside a SECTIONS construct.

 OVERLAY 0x1000 : AT (0x4000)
 {
 .text0 { o1/*.o(.text) }
 .text1 { o2/*.o(.text) }
 }

This will define both .text0 and .text1 to start at address 0x1000. .text0 will be
loaded at address 0x4000, and .text1 will be loaded immediately after .text0. The
following symbols will be defined: __load_start_text0, __load_stop_text0,
__load_start_text1, __load_stop_text1.
C code to copy overlay .text1 into the overlay area might look like the following:
 extern char __load_start_text1, __load_stop_text1;
 memcpy ((char *) 0x1000, &__load_start_text1,
 &__load_stop_text1 - &__load_start_text1);

The OVERLAY command is a convenience, since everything it does can be done using
the more basic commands. The previous example could have been written identically
as follows.
 .text0 0x1000 : AT (0x4000) { o1/*.o(.text) }
 __load_start_text0 = LOADADDR (.text0);
 __load_stop_text0 = LOADADDR (.text0) + SIZEOF (.text0);
 .text1 0x1000 : AT (0x4000 + SIZEOF (.text0)) { o2/*.o(.text) }
 __load_start_text1 = LOADADDR (.text1);
 __load_stop_text1 = LOADADDR (.text1) + SIZEOF (.text1);
 . = 0x1000 + MAX (SIZEOF (.text0), SIZEOF (.text1));

9.7.6 Other Linker Script Commands
There are several other linker script commands, which are described briefly:
ENTRY(symbol)

Specify symbol as the first instruction to execute in the program. The linker will record
the address of this symbol in the output object file header. This does not affect the
Reset instruction at address zero, which must be generated in some other way. By con-
vention, the 16-bit linker scripts construct a GOTO __reset instruction at address
zero.
EXTERN(symbol symbol ...)

Force symbol to be entered in the output file as an undefined symbol. Doing this may,
for example, trigger linking of additional modules from standard libraries. Several sym-
bols may be listed for each EXTERN, and EXTERN may appear multiple times. This com-
mand has the same effect as the -u command line option.
FORCE_COMMON_ALLOCATION

This command has the same effect as the -d command line option: to make 16-bit
linker assign space to common symbols even if a relocatable output file is specified
(-r).
NOCROSSREFS(section section ...)

This command may be used to tell 16-bit linker to issue an error about any references
among certain output sections. In certain types of programs, when one section is
loaded into memory, another section will not be. Any direct references between the two
sections would be errors.
DS52106A-page 158 2013 Microchip Technology Inc.

Linker Scripts
The NOCROSSREFS command takes a list of output section names. If the linker detects
any cross references between the sections, it reports an error and returns a non-zero
exit status. The NOCROSSREFS command uses output section names, not input section
names.
OUTPUT_ARCH(processor_name)

Specify a target processor for the link. This command has the same effect as the
-p,--processor command line option. If both are specified, the command line option
takes precedence. The processor name should appear in quotes; for example
“30F6014”, “24FJ128GA010”, or “33FJ128GP706”.
OUTPUT_FORMAT(format_name)

The OUTPUT_FORMAT command names the object file format to use for the output file.
TARGET(bfdname)

The TARGET command names the object file format to use when reading input files. It
affects subsequent INPUT and GROUP commands.
 2013 Microchip Technology Inc. DS52106A-page 159

16-Bit Assembler, Linker and Utilities User’s Guide
9.8 EXPRESSIONS IN LINKER SCRIPTS
The syntax for expressions in the linker script language is identical to that of C expres-
sions. All expressions are evaluated as 32-bit integers.
You can use and set symbol values in expressions.
The linker defines several special purpose built-in functions for use in expressions.
• Constants
• Symbol Names
• The Location Counter
• Operators
• Evaluation
• The Section of an Expression
• Built-in Functions

9.8.1 Constants
All constants are integers.
As in C, the linker considers an integer beginning with O to be octal, and an integer
beginning with 0x or 0X to be hexadecimal. The linker considers other integers to be
decimal.
In addition, you can use the suffixes K and M to scale a constant by 1024 or 1024*1024
respectively. For example, the following all refer to the same quantity:
 _fourk_1 = 4K;
 _fourk_2 = 4096;
 _fourk_3 = 0x1000;

9.8.2 Symbol Names
Unless quoted, symbol names start with a letter, underscore, or period and may include
letters, digits, underscores, periods and hyphens. Unquoted symbol names must not
conflict with any keywords. You can specify a symbol which contains odd characters or
has the same name as a keyword by surrounding the symbol name in double quotes:
 "SECTION" = 9;
 "with a space" = "also with a space" + 10;

Since symbols can contain many non-alphabetic characters, it is safest to delimit sym-
bols with spaces. For example, A-B is one symbol, whereas A - B is an expression
involving subtraction.
DS52106A-page 160 2013 Microchip Technology Inc.

Linker Scripts
9.8.3 The Location Counter
The special linker variable dot ‘.’ always contains the current output location counter.
Since the ‘.’. always refers to a location in an output section, it may only appear in an
expression within a SECTIONS command. The ‘.’ symbol may appear anywhere that
an ordinary symbol is allowed in an expression.
Assigning a value to ‘.’ will cause the location counter to be moved. This may be used
to create holes in the output section. The location counter may never be moved back-
wards.
SECTIONS
{
 output :
 {
 file1(.text)
 . = . + 1000;
 file2(.text)
 . += 1000;
 file3(.text)
 } = 0x1234;
}

In the previous example, the .text section from file1 is located at the beginning of
the output section output. It is followed by a 1000 byte gap. Then the .text section
from file2 appears, also with a 1000 byte gap following before the .text section
from file3. The notation = 0x1234 specifies what data to write in the gaps.
‘.’ actually refers to the byte offset from the start of the current containing object. Nor-
mally this is the SECTIONS statement, whose start address is 0, hence ‘.’ can be used
as an absolute address. If ‘.’ is used inside a section description, however, it refers to
the byte offset from the start of that section, not an absolute address, as shown in the
following script:
SECTIONS
{
 . = 0x100
 .text: {
 *(.text)
 . = 0x200
 }
 . = 0x500
 .data: {
 *(.data)
 . += 0x600
 }
}

The .text section will be assigned a starting address of 0x100 and a size of exactly
0x200 bytes, even if there is not enough data in the .text input sections to fill this
area. (If there is too much data, an error will be produced because this would be an
attempt to move ‘.’ backwards). The .data section will start at 0x500 and it will have
an extra 0x600 bytes worth of space after the end of the values from the .data input
sections and before the end of the .data output section itself.
 2013 Microchip Technology Inc. DS52106A-page 161

16-Bit Assembler, Linker and Utilities User’s Guide
9.8.4 Operators
The linker recognizes the standard C set of arithmetic operators, with the following
standard bindings and precedence levels:

9.8.5 Evaluation
The linker evaluates expressions lazily. It only computes the value of an expression
when absolutely necessary.
The linker needs some information, such as the value of the start address of the first
section, and the origins and lengths of memory regions, in order to do any linking at all.
These values are computed as soon as possible when the linker reads in the linker
script.
However, other values (such as symbol values) are not known or needed until after
storage allocation. Such values are evaluated later, when other information (such as
the sizes of output sections) is available for use in the symbol assignment expression.
The sizes of sections cannot be known until after allocation, so assignments dependent
upon these are not performed until after allocation.
Some expressions, such as those depending upon the location counter ‘.’, must be
evaluated during section allocation.
If the result of an expression is required, but the value is not available, then an error
results. For example, a script like the following:
SECTIONS
 {
 .text 9+this_isnt_constant :
 { *(.text) }
 }

will cause the error message “non-constant expression for initial address”.

9.8.6 The Section of an Expression
When the linker evaluates an expression, the result is either absolute or relative to
some section. A relative expression is expressed as a fixed offset from the base of a
section.
The position of the expression within the linker script determines whether it is absolute
or relative. An expression which appears within an output section definition is relative
to the base of the output section. An expression which appears elsewhere will be abso-
lute.

TABLE 9-2: PRECEDENCE OF OPERATORS
Precedence Associativity Operators Description

1 (highest) left ! - ~ Prefix operators
2 left * / % multiply, divide, modulo
3 left + - add, subtract
4 left >> << bit shift right, left
5 left == != > < <= >= Relational
6 left & bitwise and
7 left | bitwise or
8 left && logical and
9 left || logical or

10 right ? : Conditional
11 (lowest) right &= += -= *= /= Symbol assignments
DS52106A-page 162 2013 Microchip Technology Inc.

Linker Scripts
A symbol set to a relative expression will be relocatable if you request relocatable out-
put using the -r option. That means that a further link operation may change the value
of the symbol. The symbol’s section will be the section of the relative expression.
A symbol set to an absolute expression will retain the same value through any further
link operation. The symbol will be absolute, and will not have any particular associated
section.
You can use the built-in function ABSOLUTE to force an expression to be absolute when
it would otherwise be relative. For example, to create an absolute symbol set to the
address of the end of the output section .data:
SECTIONS
 {
 .data : { *(.data) _edata = ABSOLUTE(.); }
 }

If ABSOLUTE were not used, _edata would be relative to the .data section.

9.8.7 Built-in Functions
The linker script language includes a number of built-in functions for use in linker script
expressions.
ABSOLUTE(exp)

ADDR(section)

ALIGN(exp)

ASSERT(exp, message)

BLOCK(exp)

DEFINED(symbol)

LOADADDR(section)

MAX(exp1, exp2)

MIN(exp1, exp2)

NEXT(exp)

SIZEOF(section)

9.8.7.1 ABSOLUTE(exp)

Return the absolute (non-relocatable, as opposed to non-negative) value of the expres-
sion exp. Primarily useful to assign an absolute value to a symbol within a section def-
inition, where symbol values are normally section relative. See Section 9.8.6 “The
Section of an Expression”.
 2013 Microchip Technology Inc. DS52106A-page 163

16-Bit Assembler, Linker and Utilities User’s Guide
9.8.7.2 ADDR(section)

Return the absolute address (the VMA) of the named section. Your script must previ-
ously have defined the location of that section. In the following example, symbol_1
and symbol_2 are assigned identical values:
SECTIONS { ...
 .output1 :
 {
 start_of_output_1 = ABSOLUTE(.);
 ...
 }
 .output :
 {
 symbol_1 = ADDR(.output1);
 symbol_2 = start_of_output_1;
 }
...
}

9.8.7.3 ALIGN(exp)

Return the location counter (.) aligned to the next exp boundary. exp must be an
expression whose value is a power of two. This is equivalent to:
(. + exp - 1) & ~(exp - 1)

ALIGN doesn’t change the value of the location counter; it just does arithmetic on it.
Here is an example which aligns the output .data section to the next 0x2000 byte
boundary after the preceding section and sets a variable within the section to the next
0x8000 boundary after the input sections:
SECTIONS { ...
 .data ALIGN(0x2000): {
 *(.data)
 variable = ALIGN(0x8000);
 }
...
}

The first use of ALIGN in this example specifies the location of a section because it is
used as the optional address attribute of a section definition (see
Section 9.7.5 “SECTIONS Command”). The second use of ALIGN is used to define
the value of a symbol.
The built-in function NEXT is closely related to ALIGN.

9.8.7.4 ASSERT(exp, message)

Ensure that exp is non-zero. If it is zero, then exit the linker with an error code, and print
message. E.g.,
__CHECK = ASSERT(1, "OK");

9.8.7.5 BLOCK(exp)

This is a synonym for ALIGN, for compatibility with older linker scripts. It is most often
seen when setting the address of an output section.
DS52106A-page 164 2013 Microchip Technology Inc.

Linker Scripts
9.8.7.6 DEFINED(symbol)

Return 1 if symbol is in the linker global symbol table and is defined; otherwise return
0. You can use this function to provide default values for symbols. For example, the fol-
lowing script fragment shows how to set a global symbol begin to the first location in
the .text section, but if a symbol called begin already existed, its value is preserved:
SECTIONS { ...
 .text : {
 begin = DEFINED(begin) ? begin : . ;
 ...
 }
 ...
}

9.8.7.7 LOADADDR(section)

Return the absolute LMA of the named section. This is normally the same as ADDR, but
it may be different if the AT attribute is used in the output section definition (see
Section 9.7.5 “SECTIONS Command”).

9.8.7.8 MAX(exp1, exp2)

Returns the maximum of exp1 and exp2.

9.8.7.9 MIN(exp1, exp2)

Returns the minimum of exp1 and exp2.

9.8.7.10 NEXT(exp)

Return the next unallocated address that is a multiple of exp. This function is equiva-
lent to ALIGN(exp).

9.8.7.11 SIZEOF(section)

Return the size in bytes of the named section, if that section has been allocated. If the
section has not been allocated when this is evaluated, the linker will report an error. In
the following example, symbol_1 and symbol_2 are assigned identical values:
SECTIONS{ ...
 .output {
 .start = . ;
 ...
 .end = . ;
 }
 symbol_1 = .end - .start ;
 symbol_2 = SIZEOF(.output);
...
}

 2013 Microchip Technology Inc. DS52106A-page 165

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 166 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 10. Linker Processing
10.1 INTRODUCTION
How the MPLAB XC16 Object Linker builds an application from input files and the linker
script is discussed here.

10.2 HIGHLIGHTS
Topics covered in this chapter are:
• Overview of Linker Processing
• Memory Addressing
• Linker Allocation
• Global and Weak Symbols
• Handles
• Initialized Data
• Read-only Data
• Stack Allocation
• Heap Allocation
• Interrupt Vector Tables
• Optimizing Memory Usage
• Boot and Secure Segments
• Notable Symbols

10.3 OVERVIEW OF LINKER PROCESSING
A linker combines one or more object files, with optional archive files, into a single exe-
cutable output file. The object files contain relocatable sections of code and data which
the linker will allocate into target memory. The entire process is controlled by a linker
script, also known as a link command file. A linker script is required for every link.
The link process may be broken down into 6 steps:
1. Loading Input Files
2. Allocating Memory
3. Resolving Symbols
4. Creating Special Sections
5. Computing Absolute Addresses
6. Building the Output File
 2013 Microchip Technology Inc. DS52106A-page 167

16-Bit Assembler, Linker and Utilities User’s Guide
10.3.1 Loading Input Files
The initial task of the linker is to interpret link command options and load input files. If
a linker script is specified, that file is opened and interpreted. Otherwise an internal
default linker script is used. In either case, the linker script provides a description of the
target device, including specific memory region information and SFR addresses. See
Chapter 9. “Linker Scripts” for more details.
Next the linker opens all of the input object files. Each input file is checked to make sure
the object format is compatible. If the object format is not compatible, an error is gen-
erated. The contents of each input file are then loaded into internal data structures. Typ-
ically each input file will contain multiple sections of code or data. Each section contains
a list of relocation entries which associate locations in a section’s raw data with relocat-
able symbols.

10.3.2 Allocating Memory
After all of the input files have been loaded, the linker allocates memory. This is accom-
plished by assigning each input section to an output section. The relation between input
and output sections is defined by a section map in the linker script. An output section
may or may not have the same name as an input section. Each output section is then
assigned to a memory region in the target device.

If an input section is not explicitly assigned to an output section, the linker will allocate
the unassigned section according to section attributes. For more information about
linker allocation, see Section 10.5 “Linker Allocation”.

10.3.3 Resolving Symbols
Once memory has been allocated, the linker begins the process of resolving symbols.
Symbols defined in each input section have offsets that are relative to the beginning of
the section. The linker converts these values into output section offsets.
Next, the linker attempts to match all external symbol references with a corresponding
symbol definition. Multiple definitions of the same external symbol result in an error. If
an external symbol is not found, an attempt is made to locate the symbol definition in
an archive file. If the symbol definition is found in an archive, the corresponding archive
module is loaded.
Modules loaded from archives may contain additional symbol references, so the pro-
cess continues until all external symbol references have matching definitions. External
symbols that are defined as “weak” receive special processing, as explained in
Section 10.6 “Global and Weak Symbols”. If any external symbol reference remains
undefined, an error is generated.
References to redundant functions in archive files will be merged in order to conserve
memory. For example, both integer and floating-point versions of the standard C for-
matted I/O functions are included in libc.a. The 16-bit compiler will generate refer-
ences to the appropriate function, based on a static analysis of format strings. When
multiple object files are combined by the linker, both versions of a particular I/O function
may be referenced. In such cases the integer functions are redundant, since they rep-
resent a subset of the floating-point functionality. The linker will detect this situation,
and merge the I/O functions together to conserve memory. This optimization may be
disabled with the --no-smart-io option.

Note: Input sections are derived from source code by the compiler or the assem-
bler. Output sections are created by the linker.
DS52106A-page 168 2013 Microchip Technology Inc.

Linker Processing
10.3.4 Creating Special Sections
After the symbols have been resolved, the linker constructs any special input or output
sections that are required. For example, the compiler or assembler may have created
function pointers using the handle() operator. The linker then builds a special input
section named .handle to implement a jump table. For more information about
handles, see Section 10.7 “Handles”.
The linker also constructs a special input section named .dinit to support initialized
data. Section.dinit is an initialization template that is interpreted by the C run-time
library. For more information about initialized data, see Section 10.8 “Initialized
Data”.
If the application has not defined a default interrupt handler, the linker will create one
automatically in a special input section named .isr. Unused slots in the interrupt vec-
tor tables are populated with the address of this function. For more information on the
default interrupt handler, see section Section 10.12 “Interrupt Vector Tables”.

10.3.5 Computing Absolute Addresses
After the special sections have been created, the final sizes of all output sections are
known. The linker then computes absolute addresses for all output sections and exter-
nal symbols. Each output section is checked to make sure it falls within its assigned
memory regions. If any section falls outside of its memory region, an error is generated.
Any symbols defined in the linker script are also computed.
Boundaries of the stack and heap are calculated, based on the extent of unused data
memory. If insufficient memory is available, an error is generated. For more information
about the stack and heap, see Section 10.10 “Stack Allocation” and
Section 10.11 “Heap Allocation”.

10.3.6 Building the Output File
Finally, the linker builds the output file. Relocation entries in each section are patched
using absolute addresses. If the address computed for a symbol does not fit in the relo-
cation entry, a link error results. This can occur, for example, if a function pointer is
referenced without the handle() operator and its address is too large to fit in 16 bits.
A link map is also generated if requested with the appropriate option. The link map
includes a memory usage report, which shows the starting address and length of all
sections in data memory and program memory. For more information about the link
map, see Section 9.5.4 “Input/Output Section Map”.
 2013 Microchip Technology Inc. DS52106A-page 169

16-Bit Assembler, Linker and Utilities User’s Guide
10.4 MEMORY ADDRESSING
The 16-bit devices use a modified Harvard architecture with separate data and pro-
gram memory spaces. Data memory is both byte-oriented (8 bits wide) and word-ori-
ented (16 bits wide). Bytes are assigned sequential addresses, starting with 0, 1, 2, 3
and so on. Words are assigned sequential even addresses, starting with 0, 2, 4, 6 and
so on.
Program memory is word-oriented, where each instruction word is 24 bits wide. Instruc-
tion words are assigned sequential even addresses, starting with 0, 2, 4, 6 and so on.
The PC indicates the next instruction to be executed, and increments by 2 for each
instruction word. Individual bytes in a program memory word are not addressable.
While a traditional Harvard architecture does not permit access to data stored in pro-
gram memory, the 16-bit architecture provides three ways to accomplish this task:
• Table Access Instructions
• Program Space Visibility (PSV) Window
• Extended Data Space (EDS) Window

10.4.1 Table Access Instructions
The table access instructions tblrdl, tblrdh, tblwtl and tblwth can be used to
access data stored in program memory. Data is addressed through a 16-bit data regis-
ter pointer in combination with the 8-bit TBLPAG register. The special operators
tbloffset() and tblpage() facilitate table access in assembly language. See the
16-bit assembler documentation, “Table Read/Write Instructions”, for more information.
The linker resolves symbolic references to labels in program memory for use with the
table access instructions. Although data in program memory can be specified one byte
at a time, only the least-significant byte in each instruction word has a unique address.
For example, consider the following assembly source code example:
 .section prog,code
L1: .pbyte 1
L2: .pbyte 2
L3: .pbyte 3
L4: .pbyte 4
 .pbyte 5
 .pbyte 6
 .pbyte 7,8,9

In this example, the code section attribute designates a section to be allocated in pro-
gram memory, and the .pbyte directives define individual byte constants. Since labels
must resolve to a valid PC address, the assembler adds padding after each of the first
three constants. Subsequent constants do not require padding. The following assembly
listing excerpt illustrates the organization of these constants in program memory:
 1 .section prog,code
 2 000000 01 00 00 L1:.pbyte 1
 3 000002 02 00 00 L2:.pbyte 2
 4 000004 03 00 00 L3:.pbyte 3
 5 000006 04 L4:.pbyte 4
 6 05 .pbyte 5
 7 06 .pbyte 6
 8 000008 07 08 09 .pbyte 7,8,9

Constants 1, 2, 3 are padded out to a full instruction word and have unique PC
addresses. Constants 4, 5, 6 are packed into a single instruction word and share the
same address.
DS52106A-page 170 2013 Microchip Technology Inc.

Linker Processing
10.4.2 Program Space Visibility (PSV) Window
The Program Space Visibility window can be used to access data stored in the least
significant 16 bits of program memory. When PSV is enabled, the upper 32K of data
memory space (0x8000-0xFFFF) functions as a window into program memory. Data is
addressed through a 16-bit data register pointer in combination with the 8-bit PSVPAG
register. The special operators psvoffset() and psvpage() are provided to facili-
tate PSV access in assembly language. Built-in functions __builtin_psvoffset()
and __builtin_psvpage() are provided to facilitate PSV access in C.
The linker supports PSV window operations through the use of read-only data sections.
For a detailed discussion of read-only sections, see Section 10.9 “Read-only Data”.

10.4.3 Extended Data Space (EDS) Window
Some device families support a new data memory architecture called Extended Data
Space (EDS). EDS extends the functionality of the PSV window to access additional
pages of RAM as well as memory-mapped peripherals. On an EDS device, the
PSVPAG register has been replaced by two registers:
• DSRPAG for reading from Flash, RAM, etc.
• DSWPAG for writing to RAM
The operation of the EDS window is analogous to the PSV window. When the page reg-
isters are set appropriately, a portion of program memory (or extended data memory)
can be accessed in the data address range 0x8000 to 0xFFFF. Unlike the PSV window,
the EDS window is always enabled. Another difference is that certain page number
ranges imply different address spaces:

The special operators edsoffset() and edspage() are provided to facilitate EDS
access from assembly language. Built-in functions __builtin_edsoffset() and
__builtin_edspage() are provided to facilitate EDS access from C.
The EDS special operators may be used to access any object in on-chip memory,
including local RAM (i.e., RAM located within the first 32K of data address space). Con-
sequently, edsoffset() may return a pointer in the range 0x0 to 0xFFFF.
edspage() will return a page value in the range 0x001 to 0x2FF. Page values greater
that 0x300 are not currently supported.

EDS Page Range Description
0x001 to 0x1FF read/write access to RAM
0x200 to 0x2FF read-only access to lower 16 bits of program memory
0x300 to 0x3FF read-only access to upper 8 bits of program memory

Note: EDS page 0 is undefined. Application code should not attempt to access
the EDS window with a page value of zero. Such access is prohibited and
a hardware exception will occur.
 2013 Microchip Technology Inc. DS52106A-page 171

16-Bit Assembler, Linker and Utilities User’s Guide
10.5 LINKER ALLOCATION
Linker allocation is controlled by the linker script, and proceeds in three steps:
1. Mapping Input Sections to Output Sections
2. Assigning Output Sections to Regions
3. Allocating Unmapped Sections
Steps 1 and 2 are performed by a sequential memory allocator. Input sections which
appear in the linker script are assigned to specific memory regions in the target
devices. Addresses within a memory region are allocated sequentially, beginning with
the lowest address and growing upwards.
Step 3 is performed by a best-fit memory allocator. Input sections which do not appear
in the linker script are assigned to memory regions according to their attributes. The
best-fit allocator makes efficient use of any remaining memory, including gaps between
output sections that may have been left by the sequential allocator.
If memory has been reserved for the boot and/or secure segments, it will be allocated
by the best-fit allocator in step 3. The sequential allocator will avoid these segments,
so sections designated with the boot or secure attributes should not appear in the
linker script.

10.5.1 Mapping Input Sections to Output Sections
Input sections are grouped and mapped into output sections, according to the section
map. When an output section contains several different input sections, the exact order-
ing of input sections may be important. For example, consider the following output sec-
tion definition:
/*
** User Code and Library Code
*/
.text :
 {
 *(.init);
 *(.user_init);
 *(.handle);
 *(.libc) *(.libm) *(.libdsp); /* keep together in this order */
 (.lib);
 } >program

Here the output section named .text is defined. Notice that the contents of this sec-
tion are specified within curly braces {}. After the closing brace, >program indicates
that this output section should be assigned to memory region program.
The contents of output section .text may be interpreted as follows:
• Input sections named .init are collected and mapped into the output section. By

convention, there is only one .init section, and it contains the startup code for
an application. It appears first in the output section (i.e., at the lowest address) so
that its address is readily available if necessary.

• Input sections named .user_init are collected and mapped into the output
section. These sections are created by the compiler and refer to functions that
have been decorated with the user_init attribute. Their position within the out-
put section is not critical, but since they are associated with section.init, they
are located immediately after.

• All input sections named .handle are collected and mapped into the output
section. .handle sections occupy a relatively low address range, which is a
requirement for code handles.
DS52106A-page 172 2013 Microchip Technology Inc.

Linker Processing
• Input sections named .libc, .libm and .libdsp are collected and mapped
into the output section. Grouping these sections ensures locality of reference for
the run-time library functions, so that PC-relative instructions can be used for
maximum efficiency.

• Input sections which match the wildcard pattern .lib* are collected and mapped
into the output section. This includes libraries such as the peripheral libraries
(which are allocated in section .libperi).

10.5.2 Assigning Output Sections to Regions
Once the sizes of all output sections are known, they are assigned to memory regions.
Normally a region is specified in the output section definition. If a region is not specified,
the first defined memory region will be used.
Memory regions are filled sequentially, from lower to higher addresses, in the same
order that sections appear in the section map. Memory reserved for boot or secure
segments will be avoided, as well as sections that have been marked with the address
attribute in source code. A location counter, unique to each region, keeps track of the
next available memory location. There are two conditions which may cause gaps in the
allocation of memory within a region:
1. The section map specifies an absolute address for an output section, or
2. The output section has a particular alignment requirement.
In either case, any intervening memory between the current location counter and the
absolute (or aligned) address is skipped. Once a range of memory has been skipped,
it is available for use by the best-fit allocator. The exact address of all items allocated
in memory may be determined from the link map file.
Section alignment requirements typically arise in DSP programming. To utilize modulo
addressing, it is necessary to align a block of memory to a particular storage boundary.
This can be accomplished with the aligned attribute in C, or with the .align direc-
tive in assembly language. The section containing an aligned memory block must also
be aligned, to the same (or greater) power of 2. If two or more input sections have dif-
ferent alignment requirements, the largest alignment is used for the output section.
Another restriction on memory allocation is associated with read-only data sections.
Read-only data sections are identified with the psv section attribute and are dedicated
for use in the PSV window or the Extended Data Space (EDS) window. The C compiler
creates a read-only data section named .const to store constants when the
--mconst-in-code option is selected.
To allow efficient access of constant tables in the PSV or EDS window, the linker
ensures that a read-only section will not cross a page boundary. Therefore a single set-
ting of the page register can be used to access the entire section. If necessary, output
sections in program memory will be re-sorted after the sequential allocation pass to
accommodate this restriction. If an absolute address has been specified in the linker
script for a particular section, it will not be moved. In general, fully relocatable sections
provide the most flexibility for efficient memory allocation.

Note: Sections with specific alignment requirements, such as psv sections or
sections intended for modulo addressing, may be allocated most efficiently
by the best-fit allocator. For best-fit allocation, these sections should not
appear in the linker script.
 2013 Microchip Technology Inc. DS52106A-page 173

16-Bit Assembler, Linker and Utilities User’s Guide
10.5.3 Allocating Unmapped Sections
After all sections that appear in the section map are allocated, any remaining sections
are considered to be unmapped. Unmapped sections are allocated according to sec-
tion attributes. The linker uses a best-fit memory allocator to determine the most effi-
cient arrangement in memory. The primary emphasis of the best-fit allocator is the
reduction or elimination of memory gaps due to address alignment restrictions.
Since data memory is limited on many 16-bit devices, and several architectural fea-
tures imply address alignment restrictions, efficient allocation of data memory is partic-
ularly important. By convention, data memory sections are not explicitly mapped in
linker scripts, thus providing maximum flexibility for the best-fit memory allocator.
Section attributes affect memory allocation as described below. For a general discus-
sion of section attributes, see Section 4.2 “Directives that Define Sections”.

code
The code attribute specifies that a section should be allocated in program memory, as
defined by region program in the linker script. The following attributes may be used in
conjunction with code and will further specify the allocation:
• address() specifies an absolute address
• align() specifies alignment of the section starting address
• boot specifies the boot segment
• secure specifies the secure segment

data
The data attribute specifies that a section should be allocated as initialized storage in
data memory, as defined by region data in the linker script. The following attributes
may be used in conjunction with data and will further specify the allocation:
address() specifies an absolute address
near specifies the first 8K of data memory
xmemory specifies X address space, which includes all of region data below the
address __YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs
only)
ymemory specifies Y address space, which includes all of region data above the
address __YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs
only)
align() specifies alignment of the section starting address
reverse() specifies alignment of the section ending address + 1
dma specifies dma address space, which includes the portion of region data
between addresses __DMA_BASE and __DMA_END as defined in the linker
script (for PIC24H MCUs and dsPIC33F DSCs only).

DD

DD

DD
DS52106A-page 174 2013 Microchip Technology Inc.

Linker Processing
bss
The bss attribute specifies that a section should be allocated as uninitialized storage in
data memory, as defined by region data in the linker script. The following attributes
may be used in conjunction with bss and will further specify the allocation:
address() specifies an absolute address
near specifies the first 8K of data memory
xmemory specifies X address space, which includes all of region data below the
address __YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs
only)
ymemory specifies Y address space, which includes all of region data above the
address __YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs
only)
align() specifies alignment of the section starting address
reverse() specifies alignment of the section ending address + 1
dma specifies dma address space, which includes the portion of region data
between addresses __DMA_BASE and __DMA_END as defined in the linker
script (for PIC24H MCUs and dsPIC33F DSCs only).
boot specifies the boot segment
secure specifies the secure segment

persist
The persist attribute specifies that a section should be allocated as persistent storage
in data memory, as defined by region data in the linker script. Persistent storage is not
cleared or initialized by the C run-time library. The following attributes may be used in
conjunction with persist and will further specify the allocation:
address() specifies an absolute address
near specifies the first 8K of data memory
xmemory specifies X address space, which includes all of region data below the
address __YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs
only)
ymemory specifies Y address space, which includes all of region data above the
address __YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs
only)
align() specifies alignment of the section starting address
reverse() specifies alignment of the section ending address + 1
dma specifies dma address space, which includes the portion of region data
between addresses __DMA_BASE and __DMA_END as defined in the linker
script (for PIC24H MCUs and dsPIC33F DSCs only).

DD

DD

DD

DD

DD

DD
 2013 Microchip Technology Inc. DS52106A-page 175

16-Bit Assembler, Linker and Utilities User’s Guide
psv
The psv attribute specifies that a section should be allocated in program memory, as
defined by region program in the linker script. psv sections are intended for use with
the Program Space Visibility window or the Extended Data Space (EDS) window, and
will be located so that the entire contents may be accessed using a single setting of the
page register. This allocation rule implies that the total size of a psv section can not
exceed 32K. The following attributes may be used in conjunction with psv and will fur-
ther specify the allocation:
address() specifies an absolute address
align() specifies alignment of the section starting address
reverse() specifies alignment of the section ending address + 1
boot specifies the boot segment
secure specifies the secure segment

memory
The memory attribute specifies that a section should be allocated in external or
user-defined memory. The following attributes may be used in conjunction with memory
and will further specify the allocation:
address() specifies an absolute address
align() specifies alignment of the section starting address
reverse() specifies alignment of the section ending address + 1
noload specifies that the section should not be loaded with the primary
application

eedata – dsPIC30F DSCs only
The eedata attribute specifies that a section should be allocated in data EEPROM
memory, as defined by region eedata in the linker script. The following attributes may
be used in conjunction with eedata and will further specify the allocation:
address() specifies an absolute address
align() specifies alignment of the section starting address
reverse() specifies alignment of the section ending address + 1
boot specifies the boot segment
secure specifies the secure segment

heap
The heap attribute specifies that a section should be designated for use by the C
run-time library for dynamic memory allocation. The heap must always be allocated in
local data memory (address range 0x0 to 0x7FFE). The following attributes may be
used in conjunction with heap and will further specify the allocation:
address() specifies an absolute address
xmemory specifies X address space, which includes all of region data below the
address __YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs
only)
ymemory specifies Y address space, which includes all of region data above the
address __YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs
only)
align() specifies alignment of the section starting address

Note: Sections allocated in external or user-defined memory cannot be accessed
by the PSV window or the EDS window.

DD

DD

DD
DS52106A-page 176 2013 Microchip Technology Inc.

Linker Processing
stack
The stack attribute specifies that a section should be designated for use as the proces-
sor stack. On most devices, the stack must always be allocated in local data memory
(address range 0x0 to 0x7FFE). On some devices, the stack may be located anywhere
in EDS page 1 (address range 0x0 to 0xFFFE). The following attributes may be used
in conjunction with stack and will further specify the allocation:
address() specifies an absolute address
align() specifies alignment of the section starting address

10.6 GLOBAL AND WEAK SYMBOLS
When a symbol reference appears in an object file without a corresponding definition,
the symbol is declared external. By default, external symbols have global binding and
are referred to as global symbols. External symbols may be explicitly declared with
weak binding, using the __weak__ attribute in C or the .weak directive in assembly
language.
As the name implies, global symbols are visible to all input files involved in the link.
There must be one (and only one) definition for every global symbol referenced. If a
global definition is not found among the input files, archives will be searched and the
first archive module found that contains the needed definition will be loaded. If no def-
inition is found for a global symbol a link error is reported.
Weak symbols share the same name space as global symbols, but are handled differ-
ently. Multiple definitions of a weak symbol are permitted. If a weak definition is not
found among the input files, archives are not searched and a value of 0 is assumed for
all references to the weak symbol. A global symbol definition of the same name will take
precedence over a weak definition (or the lack of one). In essence, weak symbols are
considered optional and may be replaced by global symbols, or ignored entirely.

10.7 HANDLES
The modified Harvard architecture of dsPIC30F devices supports two memory spaces
of unequal size. Data memory space can be fully addressed with 16 bits while program
memory space requires 24 bits. Since the native integer data type (register width) is
only 16 bits, there is an inherent difficulty in the allocation and manipulation of function
pointers that require a full 24 bits. Reserving a pair of 16-bit registers to represent every
function pointer is inefficient in terms of code space and execution speed, since many
programs will fit in 64K words of program space or less. However, the linker must
accommodate function pointers throughout the full 24-bit range of addressable pro-
gram memory.

In order to ensure a valid 16-bit pointer for any function in the full program memory
address space, the 16-bit assembler and linker support the handle() operator. The C
compiler uses this operator whenever a function address is taken. Assembly program-
mers can use this operator three different ways:
mov #handle(func),w0 ; handle() used in an instruction
.word handle(func) ; handle() used with a data word directive
.pword handle(func) ; handle() used with a instruction word
 ;directive

The linker searches all input files for handle operators and constructs a jump table in a
section named .handle. For each function that is referenced by one or more handle
operators, a single entry is made in the jump table. Each entry is a GOTO instruction.

Note: Future versions of the compiler may define function pointers to be 24 bits
or larger. In such cases, handles will not be used.
 2013 Microchip Technology Inc. DS52106A-page 177

16-Bit Assembler, Linker and Utilities User’s Guide
Note that GOTO is capable of reaching any function in the full 24- bit address space.
Section .handle is allocated low in program memory, well within the range of a 16-bit
pointer.
When the output file is built, the absolute addresses of all functions are known. Each
handle relocation entry is filled with an absolute address. If the address of the target
function fits in 16 bits, it is inserted directly into the object code. If the absolute address
of the target function exceeds 16 bits, the address of the corresponding entry in the
jump table is used instead. Only functions located beyond the range of 16-bit address-
ing suffer any performance penalty with this technique. However, there is a code space
penalty for each unused entry in the jump table.
In order to conserve program memory, the handle jump table can be suppressed for
certain devices, or whenever the application programmer is sure that all function point-
ers will fit in 16 bits. One way is to specify the --no-handles link option on the com-
mand line or in the IDE. Another way is to define a symbol named __NO_HANDLES in
the linker script:
__NO_HANDLES = 1;

Linker scripts for 16-bit devices with 32K instruction words or less all contain the
__NO_HANDLES definition to suppress the handle jump table.

Note: If the handle jump table is suppressed, and the target address of a function
pointer does not fit in 16 bits, a “relocation truncated” link error will be gen-
erated.
DS52106A-page 178 2013 Microchip Technology Inc.

Linker Processing
10.8 INITIALIZED DATA
The linker provides automatic support for initialized variables in data memory. Variables
are allocated in sections. Each data section is declared with a flag that indicates
whether it is initialized, or not initialized.
To control the initialization of the various data sections, the linker constructs a data ini-
tialization template. The template is allocated in program memory, and is processed at
start-up by the run-time library. When the application main program takes control, all
variables in data memory have been initialized.
• Standard Data Section Names
• Data Initialization Template
• Run-Time Library Support

10.8.1 Standard Data Section Names
Traditionally, linkers based on the GNU technology support three sections in the linked
binary file:

The name “bss” dates back several decades, and means memory “Block Started by
Symbol”. By convention, bss memory is filled with zeros during program start-up.
The traditional section names are considered to have implied attributes as listed in
Table 10-1. The code attribute indicates that the section contains executable code and
should be loaded in program memory. The bss attribute indicates that the section con-
tains data storage that is not initialized, but will be filled with zeros at program start-up.
The data attribute indicates that the section contains data storage that receives initial
values at start-up.
Assembly applications may define additional sections with explicit attributes using the
section directive described in Section 4.2 “Directives that Define Sections”. For C
applications, the 16-bit compiler will automatically define sections to contain variables
and functions as needed. For more information on the attributes of variables and func-
tions that may result in automatic section definition, see the “MPLAB XC16 C Compiler
User's Guide” (DS52071).

TABLE 10-1: TRADITIONAL SECTION NAMES
Section Name Description Attribute

.text executable code code

.data data memory that receives initial values data

.bss data memory that is not initialized bss

Note: Whenever a section directive is used, all declarations that follow are
assembled into the named section. This continues until another section
directive appears, or the end of file. For more information on defining sec-
tions and section attributes, see Section 4.2 “Directives that Define Sec-
tions”.
 2013 Microchip Technology Inc. DS52106A-page 179

16-Bit Assembler, Linker and Utilities User’s Guide
10.8.2 Data Initialization Template
As noted in Section 10.8.1 “Standard Data Section Names”, the 16-bit Language
Tools support BSS-type sections (memory that is not initialized) as well as data-type
sections (memory that receives initial values). The data-type sections receive initial val-
ues at start-up, and the BSS-type sections are filled with zeros.
A generic data initialization template is used that supports any number of arbitrary
BSS-type sections or data-type sections. The data initialization template is created by
the linker and is loaded into an output section named .dinit in program memory.
Start-up code in the run-time library interprets the template and initializes data memory
accordingly.
The data initialization template contains one record for each output section in data
memory. The template is terminated by a null instruction word. The format of a data ini-
tialization record is:
/* data init record */
struct data_record {
 char *dst; /* destination address */
 unsigned int len; /* length in bytes */
 unsigned int format:7; /* format code */
 unsigned int page:9; /* destination page */
 char dat[0]; /* variable length data */
};

The first element of the record is a pointer to the section in data memory. The second
and third elements are the section length and format code, respectively. The fourth ele-
ment is the page value of the section. On EDS devices, the page value will be in the
range 0x001 to 0x1FF. On all other devices, the page value will be zero. The last ele-
ment is an optional array of data bytes. For BSS-type sections, no data bytes are
required.
The format code has three possible values.

By default, data records are created using format 2. Format 2 conserves program mem-
ory by using the entire 24-bit instruction word to store initial values. Note that this format
causes the encoded instruction words to appear as random and possibly invalid
instructions if viewed in the disassembler.
Format 1 data records may be created by specifying the --no-pack-data option.
Format 1 uses only the lower 16 bits of each 24-bit instruction word to store initial val-
ues. The upper byte of each instruction word is filled with 0x0 by default and causes
the template to appear as NOP instructions if viewed in the disassembler (and will be
executed as such by the 16-bit device). A different value may be specified for the upper
byte of the data template with the --fill-data option.

TABLE 10-2: FORMAT CODE VALUES
Format Code Description

0 Fill the output section with zeros
1 Copy 2 bytes of data from each instruction word in the data array
2 Copy 3 bytes of data from each instruction word in the data array
DS52106A-page 180 2013 Microchip Technology Inc.

Linker Processing
10.8.3 Run-Time Library Support
In order to initialize variables in data memory, the data initialization template must be
processed at start-up, before the application's main function takes control. For C pro-
grams, this task is performed by C start-up modules in the runtime library. Assembly
language programs can also use the C start-up modules by linking with
libpic30-coff.a or libpic30-elf.a.
Multiple versions of the start-up modules are contained within the runtime library. The
linker will select a startup module based on commands in the linker script. For example:
CRT0_STARTUP(crt0_standard.o)
CRT1_STARTUP(crt1_standard.o)

For each device, two start-up modules are specified: a primary module (CRT0) and an
alternate module (CRT1).
To utilize a start-up module, the application must allow the run-time library to take con-
trol at device Reset. This happens automatically for C programs. The application’s
main() function is invoked after the start-up module has completed its work. Assembly
language programs should use the following naming conventions to specify which rou-
tine takes control at device Reset.

Note that the first entry name (__reset) includes two leading underscore characters.
The second entry name (_main) includes only one leading underscore character. The
linker scripts construct a GOTO __reset instruction at location 0 in program memory,
which transfers control upon device Reset.
The primary start-up module is linked by default and performs the following:
1. The stack pointer (W15) and stack pointer limit register (SPLIM) are initialized,

using values provided by the linker or a custom linker script. For more information,
see Section 10.10 “Stack Allocation”.

2. If a .const section is defined, it is mapped into the PSV window by initializing
the PSVPAG and CORCON registers. On devices which support EDS the
DSRPAG register will be initialized. Note that a .const section is defined when
the “Constants in code space” option is selected in MPLAB IDE, or the
-mconst-in-code option is specified on the compiler command line.

3. The data initialization template in section .dinit is read, causing all uninitial-
ized sections to be cleared, and all initialized sections to be initialized with values
read from program memory.

4. If the application has defined user_init functions, section .user_init is
called.

5. The function main is called with no parameters.
6. If main returns, the processor will reset.
The alternate start-up module is linked when the --no-data-init option is spec-
ified. It performs the same operations, except for step (3), which is omitted. The alter-
nate start-up module is much smaller than the primary module, and can be selected to
conserve program memory if data initialization is not required.
Source code for both modules is provided in the src directory of the MPLAB XC16 C
compiler installation directory. The start-up modules may be modified if necessary. For
example, if an application requires main to be called with parameters, a conditional
assembly directive may be switched to provide this support.

TABLE 10-3: MAIN ENTRY POINTS
Main Entry Name Description
__reset Takes control immediately after device Reset
_main Takes control after the start-up module completes its work
 2013 Microchip Technology Inc. DS52106A-page 181

16-Bit Assembler, Linker and Utilities User’s Guide
10.9 READ-ONLY DATA
Read-only data sections are located in program memory, but are defined and accessed
just like data memory. They are useful for storing constant tables that are too large for
available data memory. The C compiler creates a read-only section named .const
when the -mconst-in-code option is specified.
Access to read-only data sections is provided by means of the PSV window, or the EDS
window. In either case, a reference to the read-only data is resolved to a data address
within the PSV or EDS window.
C programmers can use the space attribute to allocate variables in read-only data sec-
tions. Access to such variables can be managed automatically by the compiler, or by
explicit application code. For additional information on using read-only variables in C,
refer to “MPLAB® XC16 C Compiler User’s Guide” (DS52071), Section 4.14 “Program
Space Visibility (PSV) Usage” and Section 6.2 “Managed PSV Pointers”.
The psv section attribute is used to designate read-only data sections in assembly lan-
guage. The contents of read-only data sections may be specified with data directives,
as shown in the following assembly source example:
.section rdonly,psv
L1: .byte 1
L2: .byte 2

In this example, section rdonly will be allocated in program memory. Both byte con-
stants will be located in the same program memory word, followed by a pad byte. Unlike
other sections in program memory, read-only sections are byte addressable. Each
label is resolved to a unique address that lies with the PSV or EDS address range.
The linker allocates read-only sections such that they do not cross a page boundary.
Therefore, a single setting of the page register will access the entire section. A maxi-
mum length restriction is implied; the linker will issue an error message if any read-only
data section exceeds 32 Kbytes. Only the least significant 16 bits of each instruction
word are available for data storage (bits 16-23). The upper byte of each program word
is filled with 0x0 or another value specified with the --fill-upper option. None of
the p-variant assembler directives (including .pbyte and .pword) are permitted in
read-only data sections.
DS52106A-page 182 2013 Microchip Technology Inc.

Linker Processing
The following examples illustrate how bytes in read-only sections may be accessed:
; example 1
mov #psvpage(L1),w0
mov w0,PSVPAG ; set page register
mov #psvoffset(L1),w0
mov #psvoffset(L2),w1
mov.b [w0],w2 ; load the byte at L1
mov.b [w1],w3 ; load the byte at L2

; example 2
mov #edspage(L1),w0
mov w0,DSRPAG ; set page register
mov #edsoffset(L1),w0
mov #edsoffset(L2),w1
mov.b [w0],w2 ; load the byte at L1
mov.b [w1],w3 ; load the byte at L2

User-defined read-only sections do not require a custom linker script. Based on the
psv section attribute, the linker will locate the section in program memory and map its
labels into the PSV or EDS window. If the programmer wishes to declare a read-only
section in a custom linker script, the following syntax may be used:
/*
** User-Defined Constants in Program Memory
**
** This section is identified as a read-only section
** by use of the psv section attribute. It will be
** loaded into program memory and mapped into data
** memory using the PSV or EDS window.
*/
userconstants ADDR : AT (LOADADDR)
 {
 *(userconstants);
 } >program

In this example, LOADADDR specifies the load address in program memory.
It is not generally recommended to define read-only data sections in the linker script.
This is because sections that appear in the linker script are allocated sequentially, and
read-only data sections have significant page alignment restrictions. Because of these
alignment restrictions, sequential allocation can fragment memory and result in less
efficient memory utilization.
Likewise, it is not recommended to specify an absolute address for read-only data sec-
tions using attributes in source code. Absolute sections also fragment memory, and can
result in less efficient memory utilization.
 2013 Microchip Technology Inc. DS52106A-page 183

16-Bit Assembler, Linker and Utilities User’s Guide
10.10 STACK ALLOCATION
The 16-bit device dedicates register W15 for use as a software stack pointer. All pro-
cessor stack operations, including function calls, interrupts and exceptions, use the
software stack. Upon Power-on or Reset, register W15 is initialized to point to a region
of memory reserved for the stack. The stack grows upward, towards higher memory
addresses.
The 16-bit device also supports stack overflow detection. If the stack limit register
SPLIM is initialized, the device will test for overflow on all stack operations. If an over-
flow should occur, the processor will initiate a stack error exception. By default, this will
result in a processor Reset. Applications may also install a stack error exception han-
dler by defining an interrupt function named __StackError. See
Section 10.12 “Interrupt Vector Tables” for details.
By default, 16-bit linker allocates the largest stack possible from unused data memory.
The location and size of the stack is reported in the link map output file, under the head-
ing Dynamic Memory Usage. Applications can ensure that at least a minimum sized
stack is available by using the --stack command option. For example:
xc16-ld -o t.exe t1.o --stack=0x100

While performing automatic stack allocation, 16-bit linker increases the minimum
required size by a small amount to accommodate the processing of stack overflow
exceptions. The stack limit register SPLIM is initialized to point just below this extra
space, which acts as a stack overflow guardband. If not enough memory is available
for the minimum size stack plus guardband, the linker will report an error.
The default stack guardband size is 16 bytes. Applications can specify a different size
by using the --stackguard command option. For example:
xc16-ld -o t.exe t1.o --stackguard=32

As an alternative to automatic stack allocation, the stack may be allocated directly with
a user-defined section in assembly language. For example:
.section my_stack, stack
.space 0x100

When the stack is allocated in this way, the usable stack space will be slightly less than
0x100 bytes, since a portion of the user-defined section will be reserved for the stack
guardband.
Regardless of how the stack is allocated (automatically or by user-defined section) the
linker creates two symbols for use by the startup module. __SP_init defines the initial
value for the stack pointer (W15), and __SPLIM_init defines the initial value for the
stack limit register (SPLIM).
The start-up module uses these symbols to initialize the stack pointer and stack pointer
limit register. Normally the start-up module is provided by libpic30.a. In special
cases, the application may provide its own start-up code. The following stack initializa-
tion sequence may be used:
mov #__SP_init,w15 ; initialize w15
mov #__SPLIM_init,w0 ;
mov w0,_SPLIM ; initialize SPLIM
DS52106A-page 184 2013 Microchip Technology Inc.

Linker Processing

DD
10.11 HEAP ALLOCATION
The 16-bit compiler standard C library, libc.a, supports dynamic memory allocation
functions such as malloc() and free(). Applications which utilize these functions
must instruct the linker to reserve a portion of 16-bit data memory for this purpose. The
reserved memory is called a heap.
Applications can specify the heap size by using the --heap command option. For
example:
xc16-ld -o t.exe t1.o --heap=0x100

While performing automatic heap allocation, the linker allocates the heap from unused
data memory. The heap size is always specified by the programmer. In contrast, the
linker sets the stack size to a maximum value, utilizing all remaining data memory.
As an alternative to automatic heap allocation, the heap may be allocated directly with
a user-defined section in assembly source code. For example:
.section my_heap, heap
.space 0x100

The location and size of the heap are reported in the link map output file, under the
heading Dynamic Memory Usage. If the requested size is not available, the linker
reports an error.

10.12 INTERRUPT VECTOR TABLES
dsPIC30F/33F DSC and PIC24F/H MCU devices have two interrupt vector tables - a
primary and an alternate table, each containing exception vectors, as well as a RESET
instruction at location zero. By convention, the linker initializes the RESET instruction
and interrupt vector tables automatically, using information provided in the standard
linker scripts.
The 16-bit compiler provides a special syntax for writing interrupt handlers. See the
“MPLAB® XC16 C Compiler User’s Guide” (DS52071) for more information.
Assembly language programmers can install interrupt handlers simply by following the
standard naming conventions. Interrupt handlers declared with the standard names
and defined as globals are automatically installed into the vector tables.
By convention, the entry point named __reset takes control at device Reset. All appli-
cations written in assembly language must include a Reset function with this name. For
C programs, the Reset function is provided in libpic30, which initializes the C
run-time environment.

Note: Applications may provide a default interrupt handler, which will be installed
into any unused vector table entries. In assembly language, the name of the
default interrupt handler is __DefaultInterrupt. In C the name is
_DefaultInterrupt.
If the application does not provide a default interrupt handler, the linker will
create one in section .isr that contains a reset instruction. Creation of a
default interrupt handler by the linker may be suppressed with the
--no-isr option. In that case unused slots in the interrupt vector tables
will be filled with zeros.
 2013 Microchip Technology Inc. DS52106A-page 185

16-Bit Assembler, Linker and Utilities User’s Guide
The following example provides a Reset function and a default interrupt handler in
assembly language. The default interrupt handler uses persistent data storage to keep
a count of unexpected interrupts and/or error traps.
 .include "p30f6014.inc"
 .text

 .global __reset
__reset:
 ;; takes control at device reset/power-on
 mov #__SP_init,w15 ; initialize stack pointer
 mov #__SPLIM_init,w0 ; and stack limit register
 mov w0,SPLIM ;

 btst RCON,#POR ; was this a power-on reset?
 bra z,start ; branch if not

 clr FaultCount ; else clear fault counter
 bclr RCON,#POR ; and power-on bit
start:
 goto main ; start application

 .global __T1Interrupt
__T1Interrupt:
 ;; services timer 1 interrupts
 bclr IFS0,#T1IF ; clear the interrupt flag
 retfie ; and return from interrupt

 .global __DefaultInterrupt
__DefaultInterrupt:
 ;; services all other interrupts & traps
 inc FaultCount ; increment the fault counter
 reset ; and reset the device

 .section .pbss,persist ; persistent data storage
 .global FaultCount ; is not affected by reset
FaultCount:
 .space 2 ; count of unexpected interrupts

The standard naming conventions for interrupt handlers are described in the sections
below.

Note: The compiler requires only one leading underscore before any of the inter-
rupt handler names. The assembler requires two leading underscores
before any of the interrupt handler names. The compiler format is shown in
tables in the following sections.
DS52106A-page 186 2013 Microchip Technology Inc.

Linker Processing
10.12.1 dsPIC30F DSCs (Non-SMPS) Interrupt Vectors
The dsPIC30F SMPS devices are currently dsPIC30F1010, dsPIC30F2020 and
dsPIC30F2023. All other dsPIC30F devices are non-SMPS.
TABLE 10-4: INTERRUPT VECTORS – dsPIC30F DSCs (NON-SMPS)
IRQ# Primary Name Alternate Name Vector Function

N/A _ReservedTrap0 _AltReservedTrap0 Reserved

N/A _OscillatorFail _AltOscillatorFail Oscillator fail trap

N/A _AddressError _AltAddressError Address error trap

N/A _StackError _AltStackError Stack error trap

N/A _MathError _AltMathError Math error trap

N/A _ReservedTrap5 _AltReservedTrap5 Reserved

N/A _ReservedTrap6 _AltReservedTrap6 Reserved

N/A _ReservedTrap7 _AltReservedTrap7 Reserved

0 _INT0Interrupt _AltINT0Interrupt INT0 External interrupt 0

1 _IC1Interrupt _AltIC1Interrupt IC1 Input Capture 1

2 _OC1Interrupt _AltOC1Interrupt OC1 Output Compare 1

3 _T1Interrupt _AltT1Interrupt TMR1 Timer 1 expired

4 _IC2Interrupt _AltIC2Interrupt IC2 Input Capture 2

5 _OC2Interrupt _AltOC2Interrupt OC2 Output Compare 2

6 _T2Interrupt _AltT2Interrupt TMR2 Timer 2 expired

7 _T3Interrupt _AltT3Interrupt TMR3 Timer 3 expired

8 _SPI1Interrupt _AltSPI1Interrupt SPI1 Serial Peripheral Interface 1

9 _U1RXInterrupt _AltU1RXInterrupt UART1RX Uart 1 Receiver

10 _U1TXInterrupt _AltU1TXInterrupt UART1TX Uart 1 Transmitter

11 _ADCInterrupt _AltADCInterrupt ADC convert completed

12 _NVMInterrupt _AltNVMInterrupt NMM NVM write completed

13 _SI2CInterrupt _AltSI2CInterrupt Slave I2C™ interrupt

14 _MI2CInterrupt _AltMI2CInterrupt Master I2C interrupt

15 _CNInterrupt _AltCNInterrupt CN Input change interrupt

16 _INT1Interrupt _AltINT1Interrupt INT1 External interrupt 0

17 _IC7Interrupt _AltIC7Interrupt IC7 Input Capture 7

18 _IC8Interrupt _AltIC8Interrupt IC8 Input Capture 8

19 _OC3Interrupt _AltOC3Interrupt OC3 Output Compare 3

20 _OC4Interrupt _AltOC4Interrupt OC4 Output Compare 4

21 _T4Interrupt _AltT4Interrupt TMR4 Timer 4 expired

22 _T5Interrupt _AltT5Interrupt TMR5 Timer 5 expired

23 _INT2Interrupt _AltINT2Interrupt INT2 External interrupt 2

24 _U2RXInterrupt _AltU2RXInterrupt UART2RX Uart 2 Receiver

25 _U2TXInterrupt _AltU2TXInterrupt UART2TX Uart 2 Transmitter

26 _SPI2Interrupt _AltSPI2Interrupt SPI2 Serial Peripheral Interface 2

27 _C1Interrupt _AltC1Interrupt CAN1 combined IRQ

28 _IC3Interrupt _AltIC3Interrupt IC3 Input Capture 3

29 _IC4Interrupt _AltIC4Interrupt IC4 Input Capture 4

30 _IC5Interrupt _AltIC5Interrupt IC5 Input Capture 5
 2013 Microchip Technology Inc. DS52106A-page 187

16-Bit Assembler, Linker and Utilities User’s Guide
31 _IC6Interrupt _AltIC6Interrupt IC6 Input Capture 6

32 _OC5Interrupt _AltOC5Interrupt OC5 Output Compare 5

33 _OC6Interrupt _AltOC6Interrupt OC6 Output Compare 6

34 _OC7Interrupt _AltOC7Interrupt OC7 Output Compare 7

35 _OC8Interrupt _AltOC8Interrupt OC8 Output Compare 8

36 _INT3Interrupt _AltINT3Interrupt INT3 External interrupt 3

37 _INT4Interrupt _AltINT4Interrupt INT4 External interrupt 4

38 _C2Interrupt _AltC2Interrupt CAN2 combined IRQ

39 _PWMInterrupt _AltPWMInterrupt PWM period match

40 _QEIInterrupt _AltQEIInterrupt QEI position counter compare

41 _DCIInterrupt _AltDCIInterrupt DCI CODEC transfer completed

42 _LVDInterrupt _AltLVDInterrupt PLVD low voltage detected

43 _FLTAInterrupt _AltFLTAInterrupt FLTA MCPWM fault A

44 _FLTBInterrupt _AltFLTBInterrupt FLTB MCPWM fault B

45 _Interrupt45 _AltInterrupt45 Reserved

46 _Interrupt46 _AltInterrupt46 Reserved

47 _Interrupt47 _AltInterrupt47 Reserved

48 _Interrupt48 _AltInterrupt48 Reserved

49 _Interrupt49 _AltInterrupt49 Reserved

50 _Interrupt50 _AltInterrupt50 Reserved

51 _Interrupt51 _AltInterrupt51 Reserved

52 _Interrupt52 _AltInterrupt52 Reserved

53 _Interrupt53 _AltInterrupt53 Reserved

TABLE 10-4: INTERRUPT VECTORS – dsPIC30F DSCs (NON-SMPS)
IRQ# Primary Name Alternate Name Vector Function
DS52106A-page 188 2013 Microchip Technology Inc.

Linker Processing
10.12.2 dsPIC30F DSCs (SMPS) Interrupt Vectors
The dsPIC30F SMPS devices are currently dsPIC30F1010, dsPIC30F2020 and
dsPIC30F2023. All other dsPIC30F devices are non-SMPS.
TABLE 10-5: INTERRUPT VECTORS – dsPIC30F DSCs (SMPS)
IRQ# Primary Name Alternate Name Vector Function
N/A _ReservedTrap0 _AltReservedTrap0 Reserved

N/A _OscillatorFail _AltOscillatorFail Oscillator fail trap

N/A _AddressError _AltAddressError Address error trap

N/A _StackError _AltStackError Stack error trap

N/A _MathError _AltMathError Math error trap

N/A _ReservedTrap5 _AltReservedTrap5 Reserved

N/A _ReservedTrap6 _AltReservedTrap6 Reserved

N/A _ReservedTrap7 _AltReservedTrap7 Reserved

0 _INT0Interrupt _AltINT0Interrupt INT0 External interrupt 0

1 _IC1Interrupt _AltIC1Interrupt IC1 Input Capture 1

2 _OC1Interrupt _AltOC1Interrupt OC1 Output Compare 1

3 _T1Interrupt _AltT1Interrupt TMR1 Timer 1 expired

4 _Interrupt4 _AltInterrupt4 Reserved

5 _OC2Interrupt _AltOC2Interrupt OC2 Output Compare 2

6 _T2Interrupt _AltT2Interrupt TMR2 Timer 2 expired

7 _T3Interrupt _AltT3Interrupt TMR3 Timer 3 expired

8 _SPI1Interrupt _AltSPI1Interrupt SPI1 Serial peripheral interface 1

9 _U1RXInterrupt _AltU1RXInterrupt UART1RX Uart 1 Receiver

10 _U1TXInterrupt _AltU1TXInterrupt UART1TX Uart 1 Transmitter

11 _ADCInterrupt _AltADCInterrupt ADC convert completed

12 _NVMInterrupt _AltNVMInterrupt NVM write completed

13 _SI2CInterrupt _AltSI2CInterrupt Slave I2C™ interrupt

14 _MI2CInterrupt _AltMI2CInterrupt Master I2C interrupt

15 _Interrupt15 _AltInterrupt15 Reserved

16 _INT1Interrupt _AltINT1Interrupt INT1 External interrupt 1

17 _INT2Interrupt _AltINT2Interrupt INT2 External interrupt 2

18 _PWMSpEvent
 MatchInterrupt

_AltPWMSpEvent
 MatchInterrupt

PWM special event interrupt

19 _PWM1Interrupt _AltPWM1Interrupt PWM period match 1

20 _PWM2Interrupt _AltPWM2Interrupt PWM period match 2

21 _PWM3Interrupt _AltPWM3Interrupt PWM period match 3

22 _PWM4Interrupt _AltPWM4Interrupt PWM period match 4

23 _Interrupt23 _AltInterrupt23 Reserved

24 _Interrupt24 _AltInterrupt24 Reserved

25 _Interrupt25 _AltInterrupt25 Reserved

26 _Interrupt26 _AltInterrupt26 Reserved

27 _CNInterrupt _AltCNInterrupt Input Change Notification

28 _Interrupt28 _AltInterrupt28 Reserved

29 _CMP1Interrupt _AltCMP1Interrupt Analog comparator interrupt 1
 2013 Microchip Technology Inc. DS52106A-page 189

16-Bit Assembler, Linker and Utilities User’s Guide
30 _CMP2Interrupt _AltCMP2Interrupt Analog comparator interrupt 2

31 _CMP3Interrupt _AltCMP3Interrupt Analog comparator interrupt 3

32 _CMP4Interrupt _AltCMP4Interrupt Analog comparator interrupt 4

33 _Interrupt33 _AltInterrupt33 Reserved

34 _Interrupt34 _AltInterrupt34 Reserved

35 _Interrupt35 _AltInterrupt35 Reserved

36 _Interrupt36 _AltInterrupt36 Reserved

37 _ADCP0Interrupt _AltADCP0Interrupt ADC Pair 0 conversion complete

38 _ADCP1Interrupt _AltADCP1Interrupt ADC Pair 1 conversion complete

39 _ADCP2Interrupt _AltADCP2Interrupt ADC Pair 2 conversion complete

40 _ADCP3Interrupt _AltADCP3Interrupt ADC Pair 3 conversion complete

41 _ADCP4Interrupt _AltADCP4Interrupt ADC Pair 4 conversion complete

42 _ADCP5Interrupt _AltADCP5Interrupt ADC Pair 5 conversion complete

43 _Interrupt43 _AltInterrupt43 Reserved

44 _Interrupt44 _AltInterrupt44 Reserved

45 _Interrupt45 _AltInterrupt45 Reserved

46 _Interrupt46 _AltInterrupt46 Reserved

47 _Interrupt47 _AltInterrupt47 Reserved

48 _Interrupt48 _AltInterrupt48 Reserved

49 _Interrupt49 _AltInterrupt49 Reserved

50 _Interrupt50 _AltInterrupt50 Reserved

51 _Interrupt51 _AltInterrupt51 Reserved

52 _Interrupt52 _AltInterrupt52 Reserved

53 _Interrupt53 _AltInterrupt53 Reserved

TABLE 10-5: INTERRUPT VECTORS – dsPIC30F DSCs (SMPS) (CONTINUED)
IRQ# Primary Name Alternate Name Vector Function
DS52106A-page 190 2013 Microchip Technology Inc.

Linker Processing
10.12.3 PIC24F MCUs Interrupt Vectors
The table below specifies the interrupt vectors for these 16-bit devices.
TABLE 10-6: INTERRUPT VECTORS – PIC24F MCUs
IRQ# Primary Name Alternate Name Vector Function
N/A _ReservedTrap0 _AltReservedTrap0 Reserved

N/A _OscillatorFail _AltOscillatorFail Oscillator fail trap

N/A _AddressError _AltAddressError Address error trap

N/A _StackError _AltStackError Stack error trap

N/A _MathError _AltMathError Math error trap

N/A _ReservedTrap5 _AltReservedTrap5 Reserved

N/A _ReservedTrap6 _AltReservedTrap6 Reserved

N/A _ReservedTrap7 _AltReservedTrap7 Reserved

0 _INT0Interrupt _AltINT0Interrupt INT0 External interrupt 0

1 _IC1Interrupt _AltIC1Interrupt IC1 Input Capture 1

2 _OC1Interrupt _AltOC1Interrupt OC1 Output Compare 1

3 _T1Interrupt _AltT1Interrupt TMR1 Timer 1 expired

4 _Interrupt4 _AltInterrupt4 Reserved

5 _IC2Interrupt _AltIC2Interrupt IC2 Input Capture 2

6 _OC2Interrupt _AltOC2Interrupt OC2 Output Compare 2

7 _T2Interrupt _AltT2Interrupt TMR2 Timer 2 expired

8 _T3Interrupt _AltT3Interrupt TMR3 Timer 3 expired

9 _SPI1ErrInterrupt _AltSPI1ErrInterrupt SPI1 error interrupt

10 _SPI1Interrupt _AltSPI1Interrupt SPI1 transfer completed interrupt

11 _U1RXInterrupt _AltU1RXInterrupt UART1RX Uart 1 Receiver

12 _U1TXInterrupt _AltU1TXInterrupt UART1TX Uart 1 Transmitter

13 _ADC1Interrupt _AltADC1Interrupt ADC 1 convert completed

14 _Interrupt14 _AltInterrupt14 Reserved

15 _Interrupt15 _AltInterrupt15 Reserved

16 _SI2C1Interrupt _AltSI2C1Interrupt Slave I2C interrupt 1

17 _MI2C1Interrupt _AltMI2C1Interrupt Slave I2C interrupt 1

18 _CompInterrupt _AltCompInterrupt Comparator interrupt

19 _CNInterrupt _AltCNInterrupt CN Input change interrupt

20 _INT1Interrupt _AltINT1Interrupt INT1 External interrupt 1

21 _Interrupt21 _AltInterrupt21 Reserved

22 _Interrupt22 _AltInterrupt22 Reserved

23 _Interrupt23 _AltInterrupt23 Reserved

24 _Interrupt24 _AltInterrupt24 Reserved

25 _OC3Interrupt _AltOC3Interrupt OC3 Output Compare 3

26 _OC4Interrupt _AltOC4Interrupt OC4 Output Compare 4

27 _T4Interrupt _AltT4Interrupt TMR4 Timer 4 expired

28 _T5Interrupt _AltT5Interrupt TMR5 Timer 5 expired

29 _INT2Interrupt _AltINT2Interrupt INT2 External interrupt 2

30 _U2RXInterrupt _AltU2RXInterrupt UART2RX Uart 2 Receiver

31 _U2TXInterrupt _AltU2TXInterrupt UART2TX Uart 2 Transmitter
 2013 Microchip Technology Inc. DS52106A-page 191

16-Bit Assembler, Linker and Utilities User’s Guide
32 _SPI2ErrInterrupt _AltSPI2ErrInterrupt SPI2 error interrupt

33 _SPI2Interrupt _AltSPI2Interrupt SPI2 transfer completed interrupt

34 _Interrupt34 _AltInterrupt34 Reserved

35 _Interrupt35 _AltInterrupt35 Reserved

36 _Interrupt36 _AltInterrupt36 Reserved

37 _IC3Interrupt _AltIC3Interrupt IC3 Input Capture 3

38 _IC4Interrupt _AltIC4Interrupt IC4 Input Capture 4

39 _IC5Interrupt _AltIC5Interrupt IC5 Input Capture 5

40 _Interrupt40 _AltInterrupt40 Reserved

41 _OC5Interrupt _AltOC5Interrupt OC5 Output Compare 5

42 _Interrupt42 _AltInterrupt42 Reserved

43 _Interrupt43 _AltInterrupt43 Reserved

44 _Interrupt44 _AltInterrupt44 Reserved

45 _PMPInterrupt _AltPMPInterrupt Parallel Master Port interrupt

46 _Interrupt46 _AltInterrupt46 Reserved

47 _Interrupt47 _AltInterrupt47 Reserved

48 _Interrupt48 _AltInterrupt48 Reserved

49 _SI2C2Interrupt _AltSI2C2Interrupt Slave I2C™ interrupt 2

50 _MI2C2Interrupt _AltMI2C2Interrupt Slave I2C interrupt 2

51 _Interrupt51 _AltInterrupt51 Reserved

52 _Interrupt52 _AltInterrupt52 Reserved

53 _INT3Interrupt _AltINT3Interrupt INT3 External interrupt 3

54 _INT4Interrupt _AltINT4Interrupt INT4 External interrupt 4

55 _Interrupt55 _AltInterrupt55 Reserved

56 _Interrupt56 _AltInterrupt56 Reserved

57 _Interrupt57 _AltInterrupt57 Reserved

58 _Interrupt58 _AltInterrupt58 Reserved

59 _Interrupt59 _AltInterrupt59 Reserved

60 _Interrupt60 _AltInterrupt60 Reserved

61 _Interrupt61 _AltInterrupt61 Reserved

62 _RTCCInterrupt _AltRTCCInterrupt Real-time Clock and Calendar

63 _Interrupt63 _AltInterrupt63 Reserved

64 _Interrupt64 _AltInterrupt64 Reserved

65 _U1ErrInterrupt _AltU1ErrInterrupt UART1 error interrupt

66 _U2ErrInterrupt _AltU2ErrInterrupt UART2 error interrupt

67 _CRCInterrupt _AltCRCInterrupt Cyclic Redundancy Check

68 _Interrupt68 _AltInterrupt68 Reserved

69 _Interrupt69 _AltInterrupt69 Reserved

70 _Interrupt70 _AltInterrupt70 Reserved

71 _Interrupt71 _AltInterrupt71 Reserved

72 _Interrupt72 _AltInterrupt72 Reserved

73 _Interrupt73 _AltInterrupt73 Reserved

TABLE 10-6: INTERRUPT VECTORS – PIC24F MCUs (CONTINUED)
IRQ# Primary Name Alternate Name Vector Function
DS52106A-page 192 2013 Microchip Technology Inc.

Linker Processing
74 _Interrupt74 _AltInterrupt74 Reserved

75 _Interrupt75 _AltInterrupt75 Reserved

76 _Interrupt76 _AltInterrupt76 Reserved

77 _Interrupt77 _AltInterrupt77 Reserved

78 _Interrupt78 _AltInterrupt78 Reserved

79 _Interrupt79 _AltInterrupt79 Reserved

80 _Interrupt80 _AltInterrupt80 Reserved

81 _Interrupt81 _AltInterrupt81 Reserved

82 _Interrupt82 _AltInterrupt82 Reserved

83 _Interrupt83 _AltInterrupt83 Reserved

84 _Interrupt84 _AltInterrupt84 Reserved

85 _Interrupt85 _AltInterrupt85 Reserved

86 _Interrupt86 _AltInterrupt86 Reserved

87 _Interrupt87 _AltInterrupt87 Reserved

88 _Interrupt88 _AltInterrupt88 Reserved

89 _Interrupt89 _AltInterrupt89 Reserved

90 _Interrupt90 _AltInterrupt90 Reserved

91 _Interrupt91 _AltInterrupt91 Reserved

92 _Interrupt92 _AltInterrupt92 Reserved

93 _Interrupt93 _AltInterrupt93 Reserved

94 _Interrupt94 _AltInterrupt94 Reserved

95 _Interrupt95 _AltInterrupt95 Reserved

96 _Interrupt96 _AltInterrupt96 Reserved

97 _Interrupt97 _AltInterrupt97 Reserved

98 _Interrupt98 _AltInterrupt98 Reserved

99 _Interrupt99 _AltInterrupt99 Reserved

100 _Interrupt100 _AltInterrupt100 Reserved

101 _Interrupt101 _AltInterrupt101 Reserved

102 _Interrupt102 _AltInterrupt102 Reserved

103 _Interrupt103 _AltInterrupt103 Reserved

104 _Interrupt104 _AltInterrupt104 Reserved

105 _Interrupt105 _AltInterrupt105 Reserved

106 _Interrupt106 _AltInterrupt106 Reserved

107 _Interrupt107 _AltInterrupt107 Reserved

108 _Interrupt108 _AltInterrupt108 Reserved

109 _Interrupt109 _AltInterrupt109 Reserved

110 _Interrupt110 _AltInterrupt110 Reserved

111 _Interrupt111 _AltInterrupt111 Reserved

112 _Interrupt112 _AltInterrupt112 Reserved

113 _Interrupt113 _AltInterrupt113 Reserved

114 _Interrupt114 _AltInterrupt114 Reserved

115 _Interrupt115 _AltInterrupt115 Reserved

TABLE 10-6: INTERRUPT VECTORS – PIC24F MCUs (CONTINUED)
IRQ# Primary Name Alternate Name Vector Function
 2013 Microchip Technology Inc. DS52106A-page 193

16-Bit Assembler, Linker and Utilities User’s Guide
116 _Interrupt116 _AltInterrupt116 Reserved

117 _Interrupt117 _AltInterrupt117 Reserved

TABLE 10-6: INTERRUPT VECTORS – PIC24F MCUs (CONTINUED)
IRQ# Primary Name Alternate Name Vector Function
DS52106A-page 194 2013 Microchip Technology Inc.

Linker Processing
10.12.4 dsPIC33F DSCs / PIC24H MCUs Interrupt Vectors
The table below specifies the interrupt vectors for these 16-bit devices.
TABLE 10-7: INTERRUPT VECTORS – dsPIC33F DSCs/PIC24H MCUs
IRQ# Primary Name Alternate Name Vector Function
N/A _ReservedTrap0 _AltReservedTrap0 Reserved

N/A _OscillatorFail _AltOscillatorFail Oscillator fail trap

N/A _AddressError _AltAddressError Address error trap

N/A _StackError _AltStackError Stack error trap

N/A _MathError _AltMathError Math error trap

N/A _DMACError _AltDMACError DMA conflict error trap

N/A _ReservedTrap6 _AltReservedTrap6 Reserved

N/A _ReservedTrap7 _AltReservedTrap7 Reserved

0 _INT0Interrupt _AltINT0Interrupt INT0 External interrupt 0

1 _IC1Interrupt _AltIC1Interrupt IC1 Input Capture 1

2 _OC1Interrupt _AltOC1Interrupt OC1 Output Compare 1

3 _T1Interrupt _AltT1Interrupt TMR1 Timer 1 expired

4 _DMA0Interrupt _AltDMA0Interrupt DMA 0 interrupt

5 _IC2Interrupt _AltIC2Interrupt IC2 Input Capture 2

6 _OC2Interrupt _AltOC2Interrupt OC2 Output Compare 2

7 _T2Interrupt _AltT2Interrupt TMR2 Timer 2 expired

8 _T3Interrupt _AltT3Interrupt TMR3 Timer 3 expired

9 _SPI1ErrInterrupt _AltSPI1ErrInterrupt SPI1 error interrupt

10 _SPI1Interrupt _AltSPI1Interrupt SPI1 transfer completed interrupt

11 _U1RXInterrupt _AltU1RXInterrupt UART1RX Uart 1 Receiver

12 _U1TXInterrupt _AltU1TXInterrupt UART1TX Uart 1 Transmitter

13 _ADC1Interrupt _AltADC1Interrupt ADC 1 convert completed

14 _DMA1Interrupt _AltDMA1Interrupt DMA 1 interrupt

15 _Interrupt15 _AltInterrupt15 Reserved

16 _SI2C1Interrupt _AltSI2C1Interrupt Slave I2C interrupt 1

17 _MI2C1Interrupt _AltMI2C1Interrupt Master I2C interrupt 1

18 _Interrupt18 _AltInterrupt18 Reserved

19 _CNInterrupt _AltCNInterrupt CN Input change interrupt

20 _INT1Interrupt _AltINT1Interrupt INT1 External interrupt 1

21 _ADC2Interrupt _AltADC2Interrupt ADC 2 convert completed

22 _IC7Interrupt _AltIC7Interrupt IC7 Input Capture 7

23 _IC8Interrupt _AltIC8Interrupt IC8 Input Capture 8

24 _DMA2Interrupt _AltDMA2Interrupt DMA 2 interrupt

25 _OC3Interrupt _AltOC3Interrupt OC3 Output Compare 3

26 _OC4Interrupt _AltOC4Interrupt OC4 Output Compare 4

27 _T4Interrupt _AltT4Interrupt TMR4 Timer 4 expired

28 _T5Interrupt _AltT5Interrupt TMR5 Timer 5 expired

29 _INT2Interrupt _AltINT2Interrupt INT2 External interrupt 2

30 _U2RXInterrupt _AltU2RXInterrupt UART2RX Uart 2 Receiver

31 _U2TXInterrupt _AltU2TXInterrupt UART2TX Uart 2 Transmitter
 2013 Microchip Technology Inc. DS52106A-page 195

16-Bit Assembler, Linker and Utilities User’s Guide
32 _SPI2ErrInterrupt _AltSPI2ErrInterrupt SPI2 error interrupt

33 _SPI2Interrupt _AltSPI2Interrupt SPI2 transfer completed interrupt

34 _C1RxRdyInterrupt _AltC1RxRdyInterrupt CAN1 receive data ready

35 _C1Interrupt _AltC1Interrupt CAN1 completed interrupt

36 _DMA3Interrupt _AltDMA3Interrupt DMA 3 interrupt

37 _IC3Interrupt _AltIC3Interrupt IC3 Input capture 3

38 _IC4Interrupt _AltIC4Interrupt IC4 Input capture 4

39 _IC5Interrupt _AltIC5Interrupt IC5 Input capture 5

40 _IC6Interrupt _AltIC6Interrupt IC6 Input capture 6

41 _OC5Interrupt _AltOC5Interrupt OC5 Output compare 5

42 _OC6Interrupt _AltOC6Interrupt OC6 Output compare 6

43 _OC7Interrupt _AltOC7Interrupt OC7 Output compare 7

44 _OC8Interrupt _AltOC8Interrupt OC8 Output compare 8

45 _Interrupt45 _AltInterrupt45 Reserved

46 _DMA4Interrupt _AltDMA4Interrupt DMA 4 interrupt

47 _T6Interrupt _AltT6Interrupt TMR6 Timer 6 expired

48 _T7Interrupt _AltT7Interrupt TMR7 Timer 7 expired

49 _SI2C2Interrupt _AltSI2C2Interrupt Slave I2C™ interrupt 1

50 _MI2C2Interrupt _AltMI2C2Interrupt Master I2C interrupt 2

51 _T8Interrupt _AltT8Interrupt TMR8 Timer 8 expired

52 _T9Interrupt _AltT9Interrupt TMR9 Timer 9 expired

53 _INT3Interrupt _AltINT3Interrupt INT3 External interrupt 3

54 _INT4Interrupt _AltINT4Interrupt INT4 External interrupt 4

55 _C2RxRdyInterrupt _AltC2RxRdyInterrupt CAN2 receive data ready

56 _C2Interrupt _AltC2Interrupt CAN2 completed interrupt

57 _PWMInterrupt _AltPWMInterrupt PWM period match

58 _QEIInterrupt _AltQEIInterrupt QEI position counter compare

59 _DCIErrInterrupt _AltDCIErrInterrupt DCI CODEC error interrupt

60 _DCIInterrupt _AltDCIInterrupt DCI CODEC transfer done

61 _DMA5Interrupt _AltDMA5Interrupt DMA channel 5 interrupt

62 _Interrupt62 _AltInterrupt62 Reserved

63 _FLTAInterrupt _AltFLTAInterrupt FLTA MCPWM fault A

64 _FLTBInterrupt _AltFLTBInterrupt FLTB MCPWM fault B

65 _U1ErrInterrupt _AltU1ErrInterrupt UART1 error interrupt

66 _U2ErrInterrupt _AltU2ErrInterrupt UART2 error interrupt

67 _Interrupt67 _AltInterrupt67 Reserved

68 _DMA6Interrupt _AltDMA6Interrupt DMA channel 6 interrupt

69 _DMA7Interrupt _AltDMA7Interrupt DMA channel 7 interrupt

70 _C1TxReqInterrupt _AltC1TxReqInterrupt CAN1 transmit data request

71 _C2TxReqInterrupt _AltC2TxReqInterrupt CAN2 transmit data request

72 _Interrupt72 _AltInterrupt72 Reserved

73 _Interrupt73 _AltInterrupt73 Reserved

TABLE 10-7: INTERRUPT VECTORS – dsPIC33F DSCs/PIC24H MCUs
IRQ# Primary Name Alternate Name Vector Function
DS52106A-page 196 2013 Microchip Technology Inc.

Linker Processing
74 _Interrupt74 _AltInterrupt74 Reserved

75 _Interrupt75 _AltInterrupt75 Reserved

76 _Interrupt76 _AltInterrupt76 Reserved

77 _Interrupt77 _AltInterrupt77 Reserved

78 _Interrupt78 _AltInterrupt78 Reserved

79 _Interrupt79 _AltInterrupt79 Reserved

80 _Interrupt80 _AltInterrupt80 Reserved

81 _Interrupt81 _AltInterrupt81 Reserved

82 _Interrupt82 _AltInterrupt82 Reserved

83 _Interrupt83 _AltInterrupt83 Reserved

84 _Interrupt84 _AltInterrupt84 Reserved

85 _Interrupt85 _AltInterrupt85 Reserved

86 _Interrupt86 _AltInterrupt86 Reserved

87 _Interrupt87 _AltInterrupt87 Reserved

88 _Interrupt88 _AltInterrupt88 Reserved

89 _Interrupt89 _AltInterrupt89 Reserved

90 _Interrupt90 _AltInterrupt90 Reserved

91 _Interrupt91 _AltInterrupt91 Reserved

92 _Interrupt92 _AltInterrupt92 Reserved

93 _Interrupt93 _AltInterrupt93 Reserved

94 _Interrupt94 _AltInterrupt94 Reserved

95 _Interrupt95 _AltInterrupt95 Reserved

96 _Interrupt96 _AltInterrupt96 Reserved

97 _Interrupt97 _AltInterrupt97 Reserved

98 _Interrupt98 _AltInterrupt98 Reserved

99 _Interrupt99 _AltInterrupt99 Reserved

100 _Interrupt100 _AltInterrupt100 Reserved

101 _Interrupt101 _AltInterrupt101 Reserved

102 _Interrupt102 _AltInterrupt102 Reserved

103 _Interrupt103 _AltInterrupt103 Reserved

104 _Interrupt104 _AltInterrupt104 Reserved

105 _Interrupt105 _AltInterrupt105 Reserved

106 _Interrupt106 _AltInterrupt106 Reserved

107 _Interrupt107 _AltInterrupt107 Reserved

108 _Interrupt108 _AltInterrupt108 Reserved

109 _Interrupt109 _AltInterrupt109 Reserved

110 _Interrupt110 _AltInterrupt110 Reserved

111 _Interrupt111 _AltInterrupt111 Reserved

112 _Interrupt112 _AltInterrupt112 Reserved

113 _Interrupt113 _AltInterrupt113 Reserved

114 _Interrupt114 _AltInterrupt114 Reserved

115 _Interrupt115 _AltInterrupt115 Reserved

TABLE 10-7: INTERRUPT VECTORS – dsPIC33F DSCs/PIC24H MCUs
IRQ# Primary Name Alternate Name Vector Function
 2013 Microchip Technology Inc. DS52106A-page 197

16-Bit Assembler, Linker and Utilities User’s Guide
116 _Interrupt116 _AltInterrupt116 Reserved

117 _Interrupt117 _AltInterrupt117 Reserved

TABLE 10-7: INTERRUPT VECTORS – dsPIC33F DSCs/PIC24H MCUs
IRQ# Primary Name Alternate Name Vector Function
DS52106A-page 198 2013 Microchip Technology Inc.

Linker Processing
10.13 OPTIMIZING MEMORY USAGE
For memory intensive applications, it is often necessary to optimize memory usage by
reducing or eliminating any unused gaps. The linker will optimize memory allocation
automatically in most cases. However, certain constructs in source code and/or linker
scripts may introduce gaps and should be avoided.
Memory gaps generally fall into the following categories:
• Gaps Between Variables of Different Types
• Gaps Between Aligned Variables
• Gaps Between Input Sections
• Gaps Between Output Sections

10.13.1 Gaps Between Variables of Different Types
Gaps may be inserted between variables of different types to satisfy address alignment
requirements. For example, the following sequence of C statements will result in a gap:
char c1;
int i;
char c2;
int j;

Because the processor requires integers to be aligned on a 16-bit boundary, a padding
byte was inserted after variables c1 and c2. To eliminate this padding, variables of the
same type should be defined together, as shown:
char c1,c2;
int i,j;

Gaps between variables are not visible to the linker, and are not reported in the link
map. To detect these gaps, an assembly listing file must be created. The following
procedure can be used:

1. If the source file is written in C, specify the -save-temps command line option
to the compiler. This will cause an assembly version of the source file to be saved
in filename.s.
xc16-gcc test.c -save-temps

2. Specify the -ai listing option to the assembler. This will cause a table of section
information to be generated.
xc16-as test.s -ai

SECTION INFORMATION:

Section Length (PC units) Length (bytes) (dec)
------- ----------------- --------------------
.text 0 0 (0)

TOTAL PROGRAM MEMORY USED (bytes): 0 (0)

Section Alignment Gaps Length (bytes) (dec)
------- -------------- --------------------
.data 0 0 (0)
.bss 0 0 (0)
.nbss 0x2 0x8 (8)

 TOTAL DATA MEMORY USED (bytes): 0x8 (8)
 2013 Microchip Technology Inc. DS52106A-page 199

16-Bit Assembler, Linker and Utilities User’s Guide
In this example, 2 bytes of unused memory were inserted into section .nbss. Gaps
between ordinary C variables will not exceed 1 byte per variable.

10.13.2 Gaps Between Aligned Variables
Variables may be defined in C with the aligned attribute in order to specify special
alignment requirements for modulo addressing or other purposes. Use of the aligned
attribute will cause the variable to be allocated in a unique section. Since a unique sec-
tion is never combined with other input sections, no alignment padding is necessary
and the linker will allocate memory for the aligned variable in the most efficient way
possible.
For example, the following sequence of C statements will not result in an alignment
gap, because variable buf is allocated in a unique section automatically:
char c1,c2;
int i,j;
int __attribute__((aligned(256))) buf[128];

When allocating space for aligned variables in assembly language, the source code
must also specify a section name. Unless the aligned variable is defined in a unique
section, alignment padding may be inserted. For example, the following sequence of
assembly statements would result in a large alignment gap, and should be avoided:
 .section my_vars,bss
 .global _var1,_var2,_buf
_var1: .space 2
_var2: .space 2
 ; location counter is now 4
 .align 256
_buf: .space 256
 ; location counter is now 512

Re-ordering the statements so that _buf is defined first will not eliminate the gap. A
named input section will be padded so that its length is a multiple of the requested
alignment. This is necessary in order to guarantee correct alignment when multiple
input sections with the same name are combined by the linker. Therefore reordering
statements would cause the gap to move, but would not eliminate the gap.
Aligned variables in assembly must be defined in a unique section in order to avoid
alignment padding. It is not sufficient to specify a section name that is used only once,
because the assembler does not know if that section will be combined with others by
the linker. Instead, the special section name * should be used. As explained in
Section 4.2 “Directives that Define Sections”, the section name * instructs the
assembler to create a unique section that will not be combined with other sections.
To avoid alignment gaps, the previous example could be written as:
 .section my_vars,bss
 .global _var1,_var2
_var1: .space 2
_var2: .space 2

 .section *,bss
 .global _buf
 .align 256
_buf: .space 256

The alignment requirement for _buf could also be specified in the .section directive,
as shown:
 .section *,bss,align(256)
 .global _buf
_buf: .space 256
DS52106A-page 200 2013 Microchip Technology Inc.

Linker Processing
10.13.3 Gaps Between Input Sections
Gaps between input sections are similar to gaps between aligned variables, except that
the padding is inserted by the linker, not the assembler. This type of gap can occur
when variables with different alignment requirements are defined in separate source
files.
A necessary condition for the insertion of alignment gaps by the linker is explicit map-
ping of input sections in the linker script. For example, older versions of the 16-bit com-
piler (prior to version 1.30) included the following definition:
/*
** Initialized Data and Constants
*/
.data :
 {
 *(.data);
 *(.dconst);
 } >data

This example maps all input sections named .data, and all input sections named
.dconst, into a single output section. The various input sections will be combined
sequentially. If the alignment requirement of any section exceeds that of the previous
section, the linker will insert padding as needed and report an alignment gap in the link
map:
Data Memory Usage

section address alignment gaps total length (dec)
------- ------- -------------- -------------------
.data 0x800 0x10 0x90 (144)

 Total data memory used (bytes): 0x90 (144) <1%

The remedy for this type of gap is to simply eliminate the mapping of input sections in
linker scripts. Unmapped sections are allocated individually by the linker, so that no
special alignment padding is necessary. Newer versions of the 16-bit compiler (version
1.30 and later) do not explicitly map any input sections in data memory for this reason.

10.13.4 Gaps Between Output Sections
Gaps between output sections can occur when the alignment requirements differ and
multiple sections are allocated sequentially into the same memory region.
A necessary condition for the insertion of alignment gaps between output sections is
explicit mapping of output sections in the linker script. For example, older versions of
the 16-bit compiler (prior to version 1.30) included the following definitions:
/*
** Persistent Data
*/
.pbss (NOLOAD):
 {
 *(.pbss);
 } >data

/*
** Static Data
*/
.bss (NOLOAD):
 {
 *(.bss);
 } >data
 2013 Microchip Technology Inc. DS52106A-page 201

16-Bit Assembler, Linker and Utilities User’s Guide
This example creates two output sections (.pbss and .bss) and maps them into
memory region data. Because the output sections are allocated sequentially, any
difference in alignment requirements will result in gap.
In some instances the linker will make use of this gap, depending on the availability,
size, and alignment requirements of any unmapped sections. In general it is preferable
to eliminate the explicit mapping of output sections in linker scripts. When all output
sections are unmapped, the linker is free to perform a best-fit allocation based on
section attributes.
One consequence of best-fit allocation is that gaps between output sections may
appear in unexpected places. The linker tries to use small memory blocks first, and will
locate sections to leave the largest unused portions. When memory is segmented,
such as by the introduction of an absolute section, the arrangement in memory may
change dramatically. This should not be a problem unless the programmer expects a
certain area of memory to remain unused. In such cases the programmer should
reserve memory explicitly, using an array definition in source code, or by editing the
linker script.
Explicit mapping of output sections in linker scripts is recommended only when the
proximity or relative ordering of sections is important, and can't be satisfied using the
section attributes described in Section 4.2 “Directives that Define Sections”.
DS52106A-page 202 2013 Microchip Technology Inc.

Linker Processing
10.14 BOOT AND SECURE SEGMENTS
The linker supports boot, secure, and general segments as described in the “Code-
Guard™ Security Reference Manual” (DS70180). The security model which includes
segment sizes and configuration options may be specified in multiple ways. The linker
allocates memory according to this security model and supports independent linking of
application segments.

10.14.1 Specifying the Security Model
The application security model (including the sizes of various secure segments in
FLASH, RAM, and EEDATA) can be specified in two ways:
1. In source code using macros currently defined for the FBS, FSS, FGS configu-

ration words. See processor-specific include files for details and examples.
2. Using linker command options (see Section 8.8 “Options that Specify Code-

Guard™ Security Features”).
If both methods are used to provide conflicting information, the linker will issue a diag-
nostic. Likewise, a diagnostic will be issued if a security model is specified that can not
be supported by the target device. The security model will be encoded by the linker into
the executable file as contents for the FBS, FSS, and FGS configuration words.
A summary of CodeGuard Security options and segment sizes is written to the link map
file. For example:
Selected CodeGuard Options:
 FBS:BSS:STRD_SMALL_BOOT_CODE
 FSS:SSS:STRD_SMALL_SEC_CODE
CodeGuard FLASH Memory:
 boot 0x100 to 0x3fe
 secure 0x400 to 0x1ffe
 general 0x2000 to 0x17ffe
CodeGuard RAM Memory:
 general 0x800 to 0x279f
 secure (none)
 boot (none)

10.14.2 User-Defined Boot and Secure Segments
User-defined boot and secure segments are supported in program memory and data
memory. This allows an application to take advantage of the CodeGuard Security lan-
guage extensions on any device, not just CodeGuard Security-enabled devices.
User-defined segments are specified with the ram_size and flash_size options
(see Section 8.8 “Options that Specify CodeGuard™ Security Features”).
A summary of user-defined boot and secure segments is written to the link map file. For
example:
User-Defined CodeGuard Segments
 boot RAM: 0x20 bytes
 secure RAM: 0x80 bytes
CodeGuard FLASH Memory:
 boot (none)
 secure (none)
 general 0x100 to 0x17ffe
CodeGuard RAM Memory:
 general 0x800 to 0x26ff
 secure 0x2700 to 0x277f
 boot 0x2780 to 0x279f
 2013 Microchip Technology Inc. DS52106A-page 203

16-Bit Assembler, Linker and Utilities User’s Guide
User-defined segment options should not be combined with CodeGuard Security
options. They are intended for debugging and/or special bootloader applications.
User-defined segment options are not encoded in the FBS, FSS, FGS configuration
words.

10.14.3 Boot and Secure Segment Allocation
The linker will collect input sections designated as boot or secure and allocate them
according to the security model. Diagnostics will be issued for errors such as overflow
of a secure segment, or requests for a type of protected memory that does not match
the security model.
The linker reserves memory for boot and secure segments by adjusting boundaries of
the following memory regions: program, data, and eedata. Therefore the name, origin,
and length of these regions expressed in the linker script should reflect the original val-
ues, not values adjusted for boot and secure segments.

If access entry points have been defined, the linker will construct branch tables as
needed for the boot or secure segment. Branch tables fill the entire access area (32
instruction words), regardless of how many access entry slots are actually used. This
ensures that secure segment object code can be reached only by access entry point.
Unused slots in the branch table will be filled with the default entry if one has been spec-
ified.
Execution flow may reach access entry points in several different ways, using a com-
bination of machine instructions and data directives. Each access entry consists of a
single, unconditional branch instruction, which targets the actual object code for a
secure function.

10.14.4 Resolving Symbols
Symbol references within CodeGuard Security segments, and between CodeGuard
Security segments, will be processed normally. If access entry points have been spec-
ified in a code address reference or in a function call reference, they will be resolved to
specific offsets in the access entry tables. This mechanism allows the linker to resolve
references to boot or secure functions that are defined only in terms of their access
entry slot number, and is the key to supporting independently-linked applications.
Interrupt service routines designated for the boot or secure segments will be installed
as a vector in slot 16 of the appropriate segment. Unused slots in the access entry
tables are resolved to the unused function handler if one has been defined.

Note: Only sections explicitly designated as boot or secure will be allocated in
the boot and secure segments. For independently linked applications,
boot and secure functions must not call any library functions, or have any
section dependencies that are not explicitly designated as boot or
secure.

Note: The linker implements the security model in terms of memory allocation,
but does not enforce a security policy. For example, references to a func-
tion defined in a secure segment from a lower privileged segment are per-
mitted. Therefore it is possible to successfully link an application that fails
at runtime due to CodeGuard Security hardware protection. This should be
a relatively uncommon occurrence, since in practice strict CodeGuard
Security protection implies independently-linked application segments.
DS52106A-page 204 2013 Microchip Technology Inc.

Linker Processing
10.15 NOTABLE SYMBOLS
The following symbols are defined by the linker and may be useful in code develop-
ment.

__DATA_LENGTH
__CODE_LENGTH
Description: Symbols that represent the maximum length of their respective

data sections.

Include: libpic30.h

Prototype: extern int __DATA_LENGTH;
extern int __CODE_LENGTH;

Remarks: These symbols are defined in the default linker scripts. They
are treated like assembler equates but can be used from C.

Default Behavior: The address of the symbol (its value in equate terms) repre-
sents the maximum length of the data section.

Example:

_PROGRAM_END
Description: A symbol defined in program memory to mark the highest

address used by a CODE or PSV section.

Include: libpic30.h

Prototype: __attribute__((space(prog))) int _PROGRAM_END

Remarks: In C, the symbol should be referenced with the address opera-
tor (&), as in a built-in function call that accepts the address of
an object in program memory. Also, this symbol can be used
by applications as an end point for checksum calculations.
In assembly language, it should be referenced with an extra
underbar character in the prefix.

Default Behavior: The highest address used by a CODE or PSV section.

Examples: C code:
 __builtin_tblpage(&_PROGRAM_END)
 __builtin_tbloffset(&_PROGRAM_END)

 _prog_addressT big_addr;
 _init_prog_address(big_addr, &_PROGRAM_END)
Assembly code:
 mov #tblpage(__PROGRAM_END),w0
 mov #tbloffset(__PROGRAM_END),w1

 .pword __PROGRAM_END
 .long __PROGRAM_END
 2013 Microchip Technology Inc. DS52106A-page 205

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 206 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 11. Linker Examples
11.1 INTRODUCTION
The 16-bit devices include many architectural features that require special handling by
the linker. The 16-bit compiler and assembler each provide a syntax than can be used
to designate certain elements of an application for special handling. In C, a rich set of
attributes are available to modify variable and function definitions (see the “MPLAB
XC16 C Compiler User’s Guide” - DS52071). In assembly language, variables and
functions are abstracted into memory sections, which become inputs to the linker. The
assembler provides another set of attributes that are available to modify section defini-
tions (see Section 4.7 “Directives that Modify Section Alignment”).
This chapter includes a number of 16-bit specific linker examples and shows the
equivalent syntax in C and assembly language.

11.2 HIGHLIGHTS
Topics covered in this chapter are:
• Memory Addresses and Relocatable Code
• Locating a Variable at a Specific Address
• Locating a Function at a Specific Address
• Using More than 32K of Constants
• Locating a Constant at a Specific Address in Program Memory
• Locating and Accessing Data in EEPROM Memory
• Creating an Incrementing Modulo Buffer in X Memory
• Creating a Decrementing Modulo Buffer in Y Memory
• Locating the Stack at a Specific Address
• Locating and Reserving Program Memory
 2013 Microchip Technology Inc. DS52106A-page 207

16-Bit Assembler, Linker and Utilities User’s Guide
11.3 MEMORY ADDRESSES AND RELOCATABLE CODE
For most applications it is preferable to write fully relocatable source code, thus allow-
ing the linker to determine the exact addresses in memory where functions and vari-
ables are placed. The final address of external symbols in data memory and program
memory can be determined from the link map output, as shown in this excerpt:
...
External Symbols in Data Memory (by address):

 0x0802 __curbrk
 0x0804 _Stdin
 0x082c _Stdout
 0x0854 _Stderr
 0x087c _Files
 0x088c _Aldata
 0x0890 _Size_block
...
External Symbols in Data Memory (by name):

 0x0802 __curbrk
 0x088c _Aldata
 0x087c _Files
 0x0890 _Size_block
 0x0854 _Stderr
 0x0804 _Stdin
 0x082c _Stdout
...

In some cases it is necessary for the programmer to specify the address where a cer-
tain variable or function should be located. Traditionally this is done by creating a
user-defined section and writing a custom linker script. The 16-bit assembler and com-
piler provide a set of attributes that can be used to specify absolute addresses and
memory spaces directly in source code. When these attributes are used, custom linker
scripts are not required.

Note: By specifying an absolute address, the programmer assumes the respon-
sibility to ensure the specified address is reasonable and available. If the
specified address is out of range, or conflicts with a statically allocated
resource, a link error will occur.
DS52106A-page 208 2013 Microchip Technology Inc.

Linker Examples
11.4 LOCATING A VARIABLE AT A SPECIFIC ADDRESS
In this example, array buf1 is located at a specific address in data memory. The
address of buf1 can be confirmed by executing the program in the simulator, or by
examining the link map.
#include "stdio.h"
int __attribute__((address(0x900))) buf1[128];
void main()
{
 printf("0x900 = 0x%x\n", &buf1);
}

The equivalent array definition in assembly language appears below. The .align
directive is optional and represents the default alignment in data memory. Use of * as
a section name causes the assembler to generate a unique name based on the source
file name.
 .section *,address(0x900),bss,near
 .global _buf1
 .align 2
_buf1: .space 256

11.5 LOCATING A FUNCTION AT A SPECIFIC ADDRESS
In this example, function func is located at a specific address. Two built-in compiler
functions are used to calculate the program memory address, which is not otherwise
available in C.
#include "stdio.h"
void __attribute__((address(0x2000))) func()
{}
void main()
{
 long addr;

 addr = ((long) __builtin_tblpage(func) << 16)
 + __builtin_tbloffset(func);
 printf("0x2000 = 0x%lx\n", addr);
}

The equivalent function definition in assembly language appears below. The .align
directive is optional and represents the default alignment in program memory. Use of *
as a section name causes the assembler to generate a unique name based on the
source file name.
 .section *,address(0x2000),code
 .global _func
 .align 2
_func: return
 2013 Microchip Technology Inc. DS52106A-page 209

16-Bit Assembler, Linker and Utilities User’s Guide
11.6 USING MORE THAN 32K OF CONSTANTS
By default, the compiler collects const-qualified variables and string literals into a com-
piler managed section named .const. This section is allocated in program memory,
and is mapped into data memory by means of the Program Space Visibility (PSV) win-
dow, or the Extended Data Space (EDS) window. Variables may be explicitly assigned
to this section with the space(auto_psv) attribute.
Because .const is a PSV-type section, it is limited to 32K of total constants. To use
more constants, variables may be assigned to other sections with the space(psv)
attribute. This attribute causes the variable to be allocated in a program memory sec-
tion that is designated for use with the PSV or EDS window. For example:
const int __attribute__((space(psv))) table1[] =
 { 1, 2, 3, /* and so on */ };

space(psv) specifies the allocation of the variable, but it does not describe how the
variable will be accessed. In order to access variables in space(psv), the PSV or
EDS page register must be managed so that the correct range of program memory is
visible. Two options for managing the page register are available: compiler-managed
access, or user-managed access.

11.6.1 Compiler-Managed Access
With this option, the compiler generates additional instruction as needed to save, set,
and restore the PSV or EDS window page register. To specify compiler-managed
access, add the __psv__ access qualifier to the variable definition. For example:
__psv__ const int __attribute__((space(psv))) table1[] =
 { 1, 2, 3, /* and so on */ };

The __psv__ access qualifier works with any variable allocated in space(psv). It can
be used an any 16-bit device, and directs the compiler to generate code automatically
for managing the PSV or EDS window page register.
DS52106A-page 210 2013 Microchip Technology Inc.

Linker Examples
11.6.2 User-Managed Access
User-managed access means that the programmer must write explicit code to save,
set, and restore the PSV or EDS window page register. In certain situations, this could
result in faster execution speed.
In the following example, the constant status_string is located in the
compiler-managed PSV section, while the constant gamma_factor is located in a
separate PSV section.

The compiler will initialize the page register only for the compiler-managed PSV section
on startup. To properly access gamma_factor, you must manually manage the page
register. Namely, save the current page value, set the page register to access
gamma_factor, and restore the original page value after. To determine the correct
page value for a constant stored in program memory, use the
__builtin_psvpage() helper function.
When the page register has been modified to access gamma_factor, be careful not
to access constants stored in the compiler-managed PSV section, such as string
constants used with printf(). Any attempts to access constants stored in the
compiler-managed PSV section with an incorrect page value will fail.

#include "stdio.h"
#include "p30fxxxx.h"

const char __attribute__ ((space(auto_psv))) status_string[2][10] =
{"System OK", "Key Made"};
const int __attribute__ ((space(psv))) gamma_factor[3] = {13, 23, 7};

int main(void)
{
 unsigned psv_shadow;
 unsigned key, seed = 17231;

 /* print the first status string */
 printf ("%s\n", status_string[0]);

 /* save the PSVPAG */
 psv_shadow = PSVPAG;

 /* set the PSVPAG for accessing gamma_factor[] */
 PSVPAG = __builtin_psvpage (gamma_factor);

 /* build the key from gamma_factor */
 key = (seed + gamma_factor[0] + gamma_factor[1]) / gamma_factor[2];

 /* restore the PSVPAG for the compiler-managed PSVPAG */
 PSVPAG = psv_shadow;

 /* print the second status message */
 printf ("%s \n", status_string[1]);
}

Note: To modify this example to run on a device which supports the EDS window,
replace references to PSVPAG with DSRPAG.

Note: On devices with less than 16K instruction words, there is only one page and
manual management of the page register is not required.
 2013 Microchip Technology Inc. DS52106A-page 211

16-Bit Assembler, Linker and Utilities User’s Guide
11.7 LOCATING A CONSTANT AT A SPECIFIC ADDRESS IN PROGRAM MEMORY
In this example, the constant table is located at a specific address in program mem-
ory. When a constant is specifically placed at an address in program memory, it must
be placed in its own PSV section using the space(psv) attribute. If a device has only
one PSV page (16K instruction words or less), the (psv) section and (auto_psv) sec-
tion will share the same PSV page by default.

The __builtin_tbladdress() helper function can be used to find the address of
a constant stored in program memory. The __psv__ access qualifier is used to
specify compiler-managed access.
#include "stdio.h"
#include "p30fxxxx.h"

__psv__ const unsigned __attribute__ ((space(psv),
 address (0x2000))) table[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int main(void)
{
 unsigned sum=0, u;
 long addr;

/* compute the address of table and print it */
addr = __builtin_tbladdress(table);

 /* print the address of table */
 printf ("table[] is stored at address 0x%lx\n", addr);

 /* sum the values in table[] */
 for (u=0; u<10; u++) {
 sum += table[u];
 }

 /* print the sum */
 printf ("sum is %d\n", sum);
}

The equivalent constant definition for the array table in assembly language appears
below. The .align directive is optional and represents the default alignment in pro-
gram memory. Use of * as a section name causes the assembler to generate a unique
name based on the source file name.
 .section *,address(0x2000),psv
 .global _table
 .align 2
_table:
 .word 0,1,2,3,4,5,6,7,8,9

In order to allocate table in data memory, the space(psv) attribute could be
changed to space(data). In this case, the specified address would be a data memory
address. In the absence of a space attribute, the keyword const directs the C com-
piler to allocate the variable in the same space as other compiler constants. Constants
are allocated in program memory by default, or in data memory if the constants-in-data
memory model is selected.

Note: It is not possible to place a constant at a specific address in Program Mem-
ory using the space(auto_psv) attribute. Only the space(psv) attri-
bute may be used to perform this task.
DS52106A-page 212 2013 Microchip Technology Inc.

Linker Examples
11.8 LOCATING AND ACCESSING DATA IN EEPROM MEMORY
In this example, two arrays are defined in data EEPROM. Table1 is aligned to a 32-bit
address, so it will be eligible for erasing or programming using the row programming
algorithm. Table2 is defined with standard alignment, so it must be erased or pro-
grammed one word at a time. The macro _EEDATA is used to place a variable in the
Data EEPROM section of memory and align the variable to the specified byte bound-
ary. This macro is defined in the processor header files for devices which contain data
flash. This example is targeted for the dsPIC30F6014 processor, and includes the pro-
cessor header file p30f6014.h.
The compiler and linker treat Data EEPROM like any other custom-defined (psv) sec-
tion. The __psv__ access qualifier is used to instruct the compiler to generate the nec-
essary instructions to manage the PSV or EDS page register automatically.
/* load SFR definitions and macros */
#include "p30f6014.h"

/* load standard I/O definitions */
#include "stdio.h"

__psv__ unsigned int _EEDATA(32) Table1[16];

__psv__ unsigned int _EEDATA(2) Table2[4]= {0x1234, 0x5678, 0x9ABC,
0xDEF0};

unsigned int i, temp_data[4];
__psv__ unsigned int *ee_rd_ptr;

int main(void)
{

 /* initialize EEPROM read pointer */
 ee_rd_ptr = &Table2[0];

 /* read integer data from EEPROM */
 temp_data[0] = *ee_rd_ptr++;
 temp_data[1] = *ee_rd_ptr++;
 temp_data[2] = *ee_rd_ptr++;
 temp_data[3] = *ee_rd_ptr;

 /* display it */
 for (i = 0; i < 4; i++)
 printf(" %x", temp_data[i]);
 printf("\n");
}

 2013 Microchip Technology Inc. DS52106A-page 213

16-Bit Assembler, Linker and Utilities User’s Guide
The equivalent array definitions for Table1 and Table2 in assembly language appear
below. Use of * as a section name causes the assembler to generate a unique name
based on the source file name.
 .global _Table1
 .section *,eedata
 .align 32
_Table1:
 .space 32

 .global _Table2
 .section *,eedata
 .align 2
_Table2:
 .word 0x1234
 .word 0x5678
 .word 0x9ABC
 .word 0xDEF0

11.9 CREATING AN INCREMENTING MODULO BUFFER IN X MEMORY
An incrementing modulo buffer for use in assembly language can be easily defined in
C. In this example, the macro _XBSS is used to define an array whose memory align-
ment is the smallest power of two that is greater than or equal to its size. _XBSS is
defined in the processor header file, which in this example is p30f6014.h.
#include "p30f6014.h"
#include "stdio.h"

int _XBSS(128) xbuf[50];

void main()
{
 printf("Should be zero: %x\n", (int) &xbuf % 128);
}

The equivalent definition in assembly language appears below. The section alignment
could have specified with a separate .align directive. By using * as a section name,
the linker is afforded maximum flexibility to allocate memory.
 .global _xbuf
 .section *,xmemory,bss,align(128)
_xbuf: .space 100
DS52106A-page 214 2013 Microchip Technology Inc.

Linker Examples
11.10 CREATING A DECREMENTING MODULO BUFFER IN Y MEMORY
A decrementing modulo buffer for use in assembly language can be easily defined in
C. In this case, the ending address +1 of the array must be aligned. There is not a suit-
able predefined macro in the processor header files for this purpose, so variable attri-
butes are specified directly. The far attribute is recommended because Y memory
does not fall within the near space on all devices, and the compiler uses a small-data
memory model by default.
#include "stdio.h"

int __attribute__((space(ymemory), far, reverse(128))) ybuf[50];

void main()
{
 printf("Should be zero: %x\n",
 ((int) &ybuf + sizeof(ybuf)) % 128);
}

The equivalent definition in assembly language appears below. Reverse section
alignment can only be specified as an argument to the .section directive.
 .global _ybuf
 .section *,ymemory,reverse(128)
_ybuf: .space 100

11.11 LOCATING THE STACK AT A SPECIFIC ADDRESS
By default, the linker allocates a maximum-size stack using the largest unused block of
data memory. In cases where it is necessary for the programmer to specify the location
and size of the stack explicitly, the stack may be defined in assembly language, using
the stack attribute:
.section my_stack, stack, address(0x1800) .space 0x100

When the stack is allocated in this way, the usable stack space will be slightly less than
0x100 bytes, since a portion of the user-defined section will be reserved for the stack
guardband.

Notes:
1: The reverse() attribute can be used with constants stored in program mem-

ory only if they are located in a PSV section, not the compiler-managed
auto_psv section.

2: The reverse() attribute can be used with constants stored in Data EEPROM
memory.
 2013 Microchip Technology Inc. DS52106A-page 215

16-Bit Assembler, Linker and Utilities User’s Guide
11.12 LOCATING AND RESERVING PROGRAM MEMORY
In this example, a block of program memory is reserved for a special purpose, such as
a bootloader. An arbitrary sized function is allocated in the block, with the remaining
space reserved for expansion or other purposes.
The following output section definition is added to a custom linker script:
 BOOT_START = 0xA200;
 BOOT_LEN = 0x400;

 my_boot BOOT_START :
 {
 *(my_boot);
 . = BOOT_LEN; /* advance dot to the maximum length */
 } > program

Note the “dot assignment” (.=) that appears inside the section definition after the input
sections. Dot is a special variable that represents the location counter, or next fill point,
in the current section. It is an offset relative to the start of the section. The statement in
effect says “no matter how big the input sections are, make sure the output section is
full size.”
The following C function will be allocated in the reserved block:
void __attribute__((section("my_boot"))) func1()
{
 /* etc. */
}

The equivalent assembly language would be:
 .section my_boot,code
 .global _func1
_func1:
 ; and so on..
 return

If the bootloader is allocated at the start of program memory, a custom linker script is
not be required. Instead, the function could be defined with attribute boot. For example:
void __attribute__((boot)) func1()
{
 /* and so on.. */
}

The equivalent definition in assembly language:
 .section *,code,boot
 .global _func1
_func1:
 ; and so on..
 return

In this case, program memory will be automatically reserved by specifying a
CodeGuard Security™ boot segment in FBS configuration word settings, or by
specifying a user-defined boot segment with linker command option. See
Section 10.14 “Boot and Secure Segments” for more information.
DS52106A-page 216 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 12. Linker Map File
12.1 INTRODUCTION
The linker has the capability to produce map files. These map files list archive files
included, memory usage, external symbols, linker script information and memory
maps.
Topics covered in this chapter are:
• Generation
• Contents

12.2 GENERATION
To generate a map file whether in MPLAB X IDE, in MPLAB IDE v8 or on the command
line, you will need to specify an option described in Section 8.7 “Options that Modify
the Link Map Output”. By default, a map file is written to a .map file.

12.3 CONTENTS
The map files produced by the linker consist of:
• Archive Member Table – lists the name of any members from archive files that

are included in the link.
• Memory Usage Report – shows the starting address and length of all output sec-

tions in program memory, data memory and dynamic memory.
• External Symbol Table – lists all external symbols in data and program memory.
• Memory Configuration – lists all of the memory regions defined for the link.
• Linker Script and Memory Map – shows modules, sections and symbols that are

included in the link as specified in the linker script.
 2013 Microchip Technology Inc. DS52106A-page 217

16-Bit Assembler, Linker and Utilities User’s Guide
EXAMPLE 12-1: MAP FILE

Archive member included because of file (symbol)

./libpic30.a(crt0.o) t1.o (_reset)

Program Memory Usage

section address length (PC units) length (bytes) (dec)
------- ------- ----------------- --------------------
.text 0 0x106 0x189 (393)
.libtext 0x106 0x80 0xc0 (192)
.dinit 0x186 0x8 0xc (12)

 Total program memory used (bytes): 0x255 (597) 2%

Data Memory Usage

section address alignment gaps total length (dec)
------- ------- -------------- -------------------
.bss 0x800 0 0x100 (256)

 Total data memory used (bytes): 0x100 (256) 25%

Dynamic Memory Usage

region address maximum length (dec)
------ ------- ---------------------
heap 0x900 0 (0)
stack 0x900 0x2f8 (760)

 Maximum dynamic memory (bytes): 0x2f8 (760)

External Symbols in Program Memory (by address):
 0x0000fc main
 0x000106 _reset
 0x000106 _resetPRI
 0x00011a _psv_init
 0x00012a _data_init

External Symbols in Program Memory (by name):
 0x00012a _data_init
 0x00011a _psv_init
 0x000106 _reset
 0x000106 _resetPRI
 0x0000fc main

Memory Configuration

Name Origin Length Attributes
data 0x000800 0x000400 a !xr
program 0x000000 0x004000 xr
DS52106A-page 218 2013 Microchip Technology Inc.

Linker Map File
Linker script and memory map

LOAD t1.o

.text 0x000000 0x106
 *(.vector)
 .vector 0x000000 0xfc t1.o
 *(.handle)
 *(.text)
 .text 0x0000fc 0xa t1.o
 0x0000fc main

.bss 0x0800 0x100
 *(.bss)
 .bss 0x0800 0x100 t1.o

.data 0x0900 0x0
 *(.data)
 0x0000 WREG0=0x0
 0x0002 WREG1=0x2
LOAD ./libpic30.a
OUTPUT(t.exe coff-pic30)
LOAD data_init

.libtext 0x000106 0x80
 .libtext 0x000106 0x80 ./libpic30.a(crt0.o)
 0x000106 _reset
 0x000106 _resetPRI
 0x00011a _psv_init
 0x00012a _data_init

.dinit 0x000186 0x8
 .dinit 0x000186 0x8 data_init
 2013 Microchip Technology Inc. DS52106A-page 219

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 220 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 13. Linker Errors/Warnings
13.1 INTRODUCTION
MPLAB XC16 Object Linker generates errors and warnings. A descriptive list of these
outputs is shown here.
For information on linker limitations and known problems, see the Readme file.

13.2 HIGHLIGHTS
The following topics covered in this appendix:
• Errors
• Warnings

13.3 ERRORS

Symbols
% by zero
Modulo by zero is not computable.
/ by zero
Division by zero is not computable.

A
A heap is required, but has not been specified.
A heap must be specified when using Standard C input/output functions.
Address 0x8 of filename section .reset is not within region reset.
This error indicates a problem with the linker script. Normally section .reset is created
by the linker script and includes a single GOTO instruction. If a linker script is included
in the link as an input file, it will augment the built-in script instead of replacing it. Then
section .reset will be created twice, resulting in an overflow. To correct this error,
specify --script or -T on the link command before the linker script file name.
Address addr of filename section secname is not within region region.
Section secname has overflowed the memory region to which it was assigned.

C
Cannot access symbol (name) with file register addressing. Value must be less
than 8192.
name is not located in near address space. A read or write of name could not be
resolved with the small data memory model.
Cannot access symbol (name) at an odd address.
Instructions that operate on word-sized data require operands to be allocated at even
addresses.
 2013 Microchip Technology Inc. DS52106A-page 221

16-Bit Assembler, Linker and Utilities User’s Guide
cannot move location counter backwards (from address1 to address2).
The location counter can be advanced but it cannot be moved backwards. An operation
is attempting to move it from address1 backwards to address2.
cannot open linker script file name.
Unable to open the specified linker script file. Check the file name and/or the path.
cannot open name:
Cannot open the input file name. Check for correct spelling, extension or path.
cannot PROVIDE assignment to location counter.
The PROVIDE keyword may not be used to make an assignment to the location coun-
ter.
Cannot use relocation type reloc on a symbol (name) that is located in an
executable section.
An attempt was made to use a symbol in an executable section as a data address. To
reference an executable symbol in a data context, the psvoffset() or
tbloffset() operator is required.
Could not allocate data memory.
The linker could not find a way to allocate all of the sections that have been assigned
to region ‘data’.
Could not allocate program memory.
The linker could not find a way to allocate all of the sections that have been assigned
to region ‘program’.
Could not allocate eedata memory.
The linker could not find a way to allocate all of the sections that have been assigned
to region ‘eedata’.
Could not allocate section ‘name’, because ‘ymemory,near’ is not a valid
combination on this device.
The linker could not allocate section name because the combination of section attri-
butes [ymemory,near] is not valid on the current device.
Could not allocate section secname at address addr.
An address has been specified for secname that conflicts with another section or the
limit of memory.
Could not allocate section ‘section name’ it is illegal to use the last word of
program memory
Using the last word of program memory is illegal and a link error will be generated if
you attempt to place any code there.

D
Data region overlaps PSV window (%d bytes).
The data region address range must be less than the start address for the PSV window.
This error occurs when the C compiler’s “constants in code” option is selected and
more than 32K of data memory is required for program variables.
--data-init and --no-data-init options can not be used together.
--data-init creates a special output section named .dinit as a template for the
run-time initialization of data, --no-data-init does not. Only one option can be
used.
DS52106A-page 222 2013 Microchip Technology Inc.

Linker Errors/Warnings
__DMA_BASE is needed, but not defined (check linker script?)
__DMA_END is needed, but not defined (check linker script?)
The symbols __DMA_BASE and __DMA_END must be defined in order to allocate
variables or sections in dma memory. By convention these symbols are defined in the
linker script for a particular device, if that device supports dma memory.

E
EOF in comment.
An end-of-file marker (EOF) was found in a comment.

F
op forward reference of section secname.
The section name being used in the operation has not been defined yet.

G
--gc-sections and -r may not be used together.
Do not use --gc-sections option which enables garbage collection of unused input
sections with the -r option which generates relocatable output.

H
--handles and --no-handles options cannot be used together.
--handles supports far code pointers; --no-handles does not. Only one option can
be used.

I
includes nested too deeply.
include statements should be nested no deeper than 10 levels.
Illegal value for DO instruction offset (-2, -1 or 0).
These values are not permitted.
invalid assignment to location counter.
The operation is not a valid assignment to the location counter.
invalid hex number ‘num.’
A hexadecimal number can only use the digits 0-9 and A-F (or a-f). The number is iden-
tified as a hex value by using 0x as the prefix.
invalid syntax in flags.
The region attribute flags must be w, x, a, r, i and/or l. (‘!’ is used to invert the sense
of any following attributes.) Any other letters or symbols will produce the invalid syntax
error.

M
macros nested too deeply.
Macros should be nested no deeper than 10 levels.
missing argument to -m.
The emulation option (-m) requires a name for the emulation linker.
 2013 Microchip Technology Inc. DS52106A-page 223

16-Bit Assembler, Linker and Utilities User’s Guide
N
Near data space has overflowed by num bytes.
Near data space must fit within the lowest 8K address range. It includes the sections
.nbss for static or non-initialized variables, and .ndata for initialized variables.
no input files.
The 16-bit linker requires at least one object file.
non constant address expression for section secname.
The address for the specified section must be a constant expression.
nonconstant expression for name.
name must be a constant expression.
non constant address expression specified. Section will be allocated at the
current address in the current region.
If a load address is specified for a section in the linker script using the AT (symbol)
expression and “symbol” is not defined, a warning will be generated and the section will
be allocated at the current address in the current region.
Not enough contiguous memory for section secname.
The linker attempted to reallocate program memory to prevent a read-only section from
crossing a PSV page boundary, but a memory solution could not be found.
Not enough memory for heap (num bytes available).
There was not enough memory free to allocate the heap.
Not enough memory for stack (num bytes available).
There was not enough memory free to allocate the minimum-sized stack.

O
object name was created for the processor which is not instruction set
compatible with the target processor.
An object file to be linked was created for a different processor family than the link tar-
get, and the instruction sets are not compatible.
Odd values are not permitted for a new location counter.
When a .org or .porg directive is used in a code section, the new location counter
must be even. This error also occurs if an odd value is assigned to the special DOT
variable.

P
--pack-data and --no-pack-data options cannot be used together.
--pack-data fills the upper byte of each instruction word in the data initialization tem-
plate with data. --no-pack-data does not. Only one option can be used.
PSV section secname exceeds 32 Kbytes (actual size = num).
The constant data table may not exceed the program memory page size that is implied
by the PSVPAG register which is 32 Kbytes.
DS52106A-page 224 2013 Microchip Technology Inc.

Linker Errors/Warnings
R
region region is full (filename section secname).
The memory region region is full, but section secname has been assigned to it.
--relax and -r may not be used together.
The option --relax which turns relaxation on may not be used with the -r option
which generates relocatable output.
relocation truncated to fit: PC RELATIVE BRANCH name.
The relative displacement to function name is greater than 32K instruction words. A
function call to name could not be resolved with the small code memory model.
relocation truncated to fit: relocation_type name.
The relocated value of name is too large for its intended use.

S
section .handle must be allocated low in program memory.
A custom linker script has organized memory such that section .handle is not located
within the first 32K words of program memory.
section secname1 [startaddr1—startaddr2] overlaps section secname2
[startaddr1—startaddr2]\n”),
There is not enough region memory to place both of the specified sections or they have
been assigned to addresses that result in an overlap.
-shared not supported.
The option -shared is not supported by the 16-bit linker.
Symbol (name) is not located in an executable section.
An attempt was made to call or branch to a symbol in a bss, data or readonly section.
syntax error.
An incorrectly formed expression or other syntax error was encountered in a linker
script.

U
undefined symbol ‘__reset’ referenced in expression.
The library -lpic30 is required, or some other input file that contains a start-up func-
tion. This error may result from a version or architecture mismatch between the linker
and library files.
undefined symbol ‘symbol’ referenced in expression.
The specified symbol has not been defined.
undefined reference to ‘_Ctype’.
undefined reference to ‘_Tolotab’.
undefined reference to ‘_Touptab’.
These errors indicate a version mismatch between include files and library files, or
between library files and precompiled object files. Make sure that all object files to be
linked have been compiled with the same version of the 16-bit compiler. If you are using
a precompiled object or library file from another vendor, request an update that is com-
patible with the latest version of the compiler.
 2013 Microchip Technology Inc. DS52106A-page 225

16-Bit Assembler, Linker and Utilities User’s Guide
undefined reference to ‘symbol.’
The specified symbol has not been defined. Either an input file has been omitted, a
library file is incomplete or a circular reference exists between libraries. Circular refer-
ences can be resolved with the --start-group, --end-group options.
unrecognized emulation mode: target
Supported emulations:
The specified target is not an emulation mode supported by the linker. The list of sup-
ported emulations follows the error message.
unrecognized -a option ‘argument.’
The -a option is not supported by 16-bit devices; so it is ignored.
unrecognized -assert option ‘option.’
The -assert option is not supported by 16-bit devices; so it is ignored.
unrecognized option ‘option’.
The specified option is not a recognized linker option. Check the option and its usage
information with the --help option.
op uses undefined section secname.
The section referred to in the operation is not defined.

X
X data space has overflowed by num bytes.
The address range for X data space must be less than the start of Y data space. The
start of Y data space is determined by the processor used.

Y
__YDATA_BASE is needed, but not defined.
By convention, the starting address of Y data memory for a particular device is defined
in linker scripts using this name. The linker needed this information to allocate a section
with xmemory or ymemory attribute, but could not find it.
DS52106A-page 226 2013 Microchip Technology Inc.

Linker Errors/Warnings
13.4 WARNINGS

A
Addresses specified for READONLY section name are not valid for PSV window.
The application has specified absolute addresses for a read-only section that are not
consistent with the PSV window. If two addresses have been specified, the least- sig-
nificant 15 bits should be identical. Also, the most significant bit of the virtual address
should be set.

C
cannot find entry symbol symbol defaulting to value.
The linker can’t find the entry symbol, so it will use the first address in the text section.
This message may occur if the -e option incorrectly contains an equal sign (‘=’) in the
option (i.e., -e=0x200).
common of ‘name’ overridden by definition
defined here.
The specified variable name has been declared in more than one file with one instance
being declared as common. The definition will override the common symbol.
common of ‘name’ overridden by larger common
larger common is here.
The specified variable name has been declared in more than one file with different val-
ues. The smaller value will be overridden with the larger value.
common of ‘name’ overriding smaller common
smaller common is here.
The specified variable name has been declared in more than one file with different val-
ues. The first one encountered was smaller and will be overridden with the larger value.

D
data initialization has been turned off, therefore section secname will not be
initialized.
The specified section requires initialization, but data initialization has been turned off;
so, the initial data values are discarded. Storage for the data sections will be allocated
as usual.
data memory region not specified. Using default upper limit of addr.
The linker has allocated a maximum-size stack. Since the data memory region was not
specified, a default upper limit was used.
definition of ‘name’ overriding common
common is here.
The specified variable name has been declared in more than one file with one instance
being declared as common. The definition will override the common symbol.

H
--heap option overrides HEAPSIZE symbol.
The --heap option has been specified and the HEAPSIZE symbol has been defined
but they have different values so the --heap value will be used.
 2013 Microchip Technology Inc. DS52106A-page 227

16-Bit Assembler, Linker and Utilities User’s Guide
I
initial values were specified for a non-loadable data section (name). These
values will be ignored.
By definition, a persistent data section implies data that is not initialized; therefore the
values are discarded. Storage for the section will be allocated as usual.

M
multiple common of ‘name’
previous common is here.
The specified variable name has been declared in more than one file.

N
no memory region specified for section ‘secname’.
Section secname has been assigned to a default memory region, but other non-default
regions are also defined.

O
object name was created for the processor and references register name.
An object file to be linked was created for a different processor family than the link tar-
get, and references an SFR that may not be compatible.

P
program memory region not specified. Using default upper limit of addr.
The linker has reallocated program memory to prevent a read-only section from cross-
ing a PSV page boundary. Since the program memory region was not specified, a
default upper limit was used.

R
READONLY section secname at addr crosses a PSVPAG boundary.
Address addr has been specified for a read-only section, causing it to cross a PSV
page boundary. To allow efficient access of constant tables in the PSV window, it is rec-
ommended that the section should not cross a PSVPAG boundary.
‘-retain-symbols-file’ overrides ‘-s’ and ‘-S’
If the strip all symbols option (-s) or the strip debug symbols option (-S) is used with
--retain-symbols-file FILE only the symbols specified in the file will be kept.

S
--stack option overrides STACKSIZE symbol.
The --stack option has been specified and the STACKSIZE symbol has been defined
but they have different values so the --stack value will be used.

T
target processor ‘name’ does not match linker script.
The link target processor specified on the command line does not match the linker
script OUTPUT_ARCH command. The processor name specified on the command line
takes precedence.
DS52106A-page 228 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Part 3 – 16-Bit Utilities (including the Archiver/Librarian)
Chapter 14. MPLAB XC16 Object Archiver/Librarian.. 231
Chapter 15. Other Utilities ... 237
 2013 Microchip Technology Inc. DS52106A-page 229

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 230 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 14. MPLAB XC16 Object Archiver/Librarian
14.1 INTRODUCTION
The MPLAB XC16 Object Archiver/Librarian creates, modifies and extracts files from
archives. This tool is one of several utilities (xc16-ar). An “archive” is a single file hold-
ing a collection of other files in a structure that makes it possible to retrieve the original
individual files (called “members” of the archive).
The original files’ contents, mode (permissions), timestamp, owner and group are pre-
served in the archive, and can be restored on extraction.
The 16-bit archiver/librarian can maintain archives whose members have names of any
length; however, if an f modifier is used, the file names will be truncated to 15 charac-
ters.
The archiver is considered a binary utility because archives of this sort are most often
used as “libraries” holding commonly needed subroutines.
The archiver creates an index to the symbols defined in relocatable object modules in
the archive when you specify the modifier s. Once created, this index is updated in the
archive whenever the archiver makes a change to its contents (save for the q update
operation). An archive with such an index speeds up linking to the library and allows
routines in the library to call each other without regard to their placement in the archive.
You may use xc16-nm -s or xc16-nm --print-armap to list this index table. If an
archive lacks the table, another form of the 16-bit archiver/librarian called
xc16-ranlib can be used to add only the table.
The 16-bit archiver/librarian is designed to be compatible with two different facilities.
You can control its activity using command line options or, if you specify the single com-
mand line option -M, you can control it with a script supplied via standard input.

14.2 HIGHLIGHTS
The following topics are covered in this chapter:
• Archiver/Librarian and Other Development Tools
• Feature Set
• Input/Output Files
• Syntax
• Options
• Scripts
 2013 Microchip Technology Inc. DS52106A-page 231

16-Bit Assembler, Linker and Utilities User’s Guide
14.3 ARCHIVER/LIBRARIAN AND OTHER DEVELOPMENT TOOLS
The 16-bit librarian creates an archive file from object files created by the 16-bit assem-
bler. Archive files may then be linked by the 16-bit linker with other relocatable object
files to create an executable file. See the “MPLAB XC16 C Compiler User’s Guide”
(DS52071) for an overview of the tools process flow.

14.4 FEATURE SET
Notable features of the librarian include:
• Available for Windows
• Command Line Interface

14.5 INPUT/OUTPUT FILES
The 16-bit archiver/librarian generates archive files (.a). An archive file is a single file
holding a collection of other files in a structure that makes it possible to retrieve the orig-
inal individual files.
By default, object files are processed in the ELF format. To specify ELF or COFF format
explicitly, use the -omf option on the command line, as shown:
xc16-ar -omf=coff [options...]
xc16-ar -omf=elf [options...]

Alternatively, the environment variable XC16_OMF may be used to specify object file
format for the 16-bit language tools.

14.6 SYNTAX
xc16-ar [-]P[MOD [RELPOS] [COUNT]] ARCHIVE [MEMBER...]
xc16-ar -M [<mri-script]
DS52106A-page 232 2013 Microchip Technology Inc.

MPLAB XC16 Object Archiver/Librarian
14.7 OPTIONS
When you use the 16-bit archiver/librarian with command line options, the archiver
insists on at least two arguments to execute: one key letter specifying the operation
(optionally accompanied by other key letters specifying modifiers), and the archive
name.
xc16-ar [-]P[MOD [RELPOS][COUNT]] ARCHIVE [MEMBER...]

Most operations can also accept further MEMBER arguments, specifying archive mem-
bers. Without specifying members, the entire archive is used.
The 16-bit archiver/librarian allows you to mix the operation code P and modifier flags
MOD in any order, within the first command line argument. If you wish, you may begin
the first command line argument with a dash.
The P keyletter specifies what operation to execute; it may be any of the following, but
you must specify only one of them.

Note: Command line options are case sensitive.

TABLE 14-1: OPERATION TO EXECUTE

Option Function

d Delete modules from the archive. Specify the names of modules to be deleted as
MEMBER...; the archive is untouched if you specify no files to delete.
If you specify the v modifier, the 16-bit archiver/librarian lists each module as it is
deleted.

m Use this operation to move members in an archive.
The ordering of members in an archive can make a difference in how programs are
linked using the library, if a symbol is defined in more than one member.
If no modifiers are used with m, any members you name in the MEMBER arguments
are moved to the end of the archive; you can use the a, b or i modifiers to move
them to a specified place instead.

p Print the specified members of the archive, to the standard output file. If the v mod-
ifier is specified, show the member name before copying its contents to standard
output. If you specify no MEMBER arguments, all the files in the archive are printed.

q Append the files MEMBER... into ARCHIVE.
r Insert the files MEMBER... into ARCHIVE (with replacement).

If one of the files named in MEMBER... does not exist, the archiver displays an
error message, and leaves undisturbed any existing members of the archive match-
ing that name. By default, new members are added at the end of the file; but you
may use one of the modifiers a, b or i to request placement relative to some exist-
ing member. The modifier v used with this operation elicits a line of output for each
file inserted, along with one of the letters a or r to indicate whether the file was
appended (no old member deleted) or replaced.

t Display a table listing the contents of ARCHIVE, or those of the files listed in
MEMBER..., that are present in the archive. Normally only the member name is
shown; if you also want to see the modes (permissions), timestamp, owner, group
and size, you can request that by also specifying the v modifier. If you do not spec-
ify a MEMBER, all files in the archive are listed.
For example, if there is more than one file with the same name (fie) in an archive
(b.a), then xc16-ar t b.a fie lists only the first instance; to see them all,
you must ask for a complete listing in xc16-ar t b.a.

x Extract members (named MEMBER) from the archive. You can use the v modifier
with this operation, to request that the archiver list each name as it extracts it.
If you do not specify a MEMBER, all files in the archive are extracted.
 2013 Microchip Technology Inc. DS52106A-page 233

16-Bit Assembler, Linker and Utilities User’s Guide
A number of modifiers (MOD) may immediately follow the P keyletter to specify varia-
tions on an operation’s behavior.

TABLE 14-2: MODIFIERS

Option Function

a Add new files after an existing member of the archive. If you use the modifier a,
the name of an existing archive member must be present as the RELPOS argu-
ment, before the ARCHIVE specification.

b Add new files before an existing member of the archive. If you use the modifier
b, the name of an existing archive member must be present as the RELPOS
argument, before the ARCHIVE specification. (Same as i.)

c Create the archive. The specified ARCHIVE is always created if it did not exist,
when you requested an update. But a warning is issued unless you specify in
advance that you expect to create it, by using this modifier.

f Truncate names in the archive. The 16-bit archiver/librarian will normally permit
file names of any length. This will cause it to create archives that are not compat-
ible with the native archiver program on some systems. If this is a concern, the f
modifier may be used to truncate file names when putting them in the archive.

i Insert new files before an existing member of the archive. If you use the modifier
i, the name of an existing archive member must be present as the RELPOS
argument, before the ARCHIVE specification. (Same as b.)

l This modifier is accepted but not used.
N Uses the COUNT parameter. This is used if there are multiple entries in the

archive with the same name. Extract or delete instance COUNT of the given
name from the archive.

o Preserve the original dates of members when extracting them. If you do not
specify this modifier, files extracted from the archive are stamped with the time of
extraction.

P Use the full path name when matching names in the archive. The 16-bit
archiver/librarian cannot create an archive with a full path name (such archives
are not POSIX compliant), but other archive creators can. This option will cause
the archiver to match file names using a complete path name, which can be con-
venient when extracting a single file from an archive created by another tool.

s Write an object-file index into the archive, or update an existing one, even if no
other change is made to the archive. You may use this modifier flag either with
any operation, or alone. Running xc16-ar s on an archive is equivalent to
running xc16-ranlib on it.

S Do not generate an archive symbol table. This can speed up building a large
library in several steps. The resulting archive cannot be used with the linker. In
order to build a symbol table, you must omit the S modifier on the last execution
of the archiver, or you must run ranlib on the archive.

u Normally, xc16-ar r... inserts all files listed into the archive. If you would like
to insert only those of the files you list that are newer than existing members of
the same names, use this modifier. The u modifier is allowed only for the opera-
tion r (replace). In particular, the combination qu is not allowed, since checking
the timestamps would lose any speed advantage from the operation q.

v This modifier requests the verbose version of an operation. Many operations dis-
play additional information, such as, file names processed when the modifier v
is appended.

V This modifier shows the version number of the 16-bit archiver/librarian.
DS52106A-page 234 2013 Microchip Technology Inc.

MPLAB XC16 Object Archiver/Librarian
14.8 SCRIPTS
If you use the single command line option -M with the archiver, you can control its oper-
ation with a rudimentary command language.
xc16-ar -M [<SCRIPT]

This form of the 16-bit archiver/librarian operates interactively if standard input is com-
ing directly from a terminal. During interactive use, the archiver prompts for input (the
prompt is AR >), and continues executing even after errors. If you redirect standard
input to a script file, no prompts are issued, and the 16-bit archiver/librarian abandons
execution (with a nonzero exit code) on any error.
The archiver command language is not designed to be equivalent to the command line
options; in fact, it provides somewhat less control over archives. The only purpose of
the command language is to ease the transition to the 16-bit archiver/librarian for devel-
opers who already have scripts written for the MRI “librarian” program.
The syntax for the 16-bit archiver/librarian command language is straightforward:
• commands are recognized in upper or lower case; for example, LIST is the same

as list. In the following descriptions, commands are shown in upper case for
clarity.

• a single command may appear on each line; it is the first word on the line.
• empty lines are allowed, and have no effect.
• comments are allowed; text after either of the characters “*” or “;” is ignored.
• Whenever you use a list of names as part of the argument to an xc16-ar com-

mand, you can separate the individual names with either commas or blanks. Com-
mas are shown in the explanations below, for clarity.

• “+” is used as a line continuation character; if “+” appears at the end of a line, the
text on the following line is considered part of the current command.

Table 14-3 shows the commands you can use in archiver scripts, or when using the
archiver interactively. Three of them have special significance.

Note: Command line options are case sensitive.

TABLE 14-3: ARCHIVER SCRIPTS COMMANDS

Option Function
OPEN or CREATE Specify a “current archive”, which is a temporary file

required for most of the other commands.
SAVE Commits the changes so far specified by the script.

Prior to SAVE, commands affect only the temporary
copy of the current archive.

ADDLIB ARCHIVE
ADDLIB ARCHIVE (MODULE,
MODULE,...MODULE)

Add all the contents of ARCHIVE (or, if specified,
each named MODULE from ARCHIVE) to the current
archive.
Requires prior use of OPEN or CREATE.

ADDMOD MEMBER, MEMBER, ...
MEMBER

Add each named MEMBER as a module in the cur-
rent archive.
Requires prior use of OPEN or CREATE.

CLEAR Discard the contents of the current archive, canceling
the effect of any operations since the last SAVE. May
be executed (with no effect) even if no current
archive is specified.
 2013 Microchip Technology Inc. DS52106A-page 235

16-Bit Assembler, Linker and Utilities User’s Guide
CREATE ARCHIVE Creates an archive, and makes it the current archive
(required for many other commands). The new
archive is created with a temporary name; it is not
actually saved as ARCHIVE until you use SAVE.
You can overwrite existing archives; similarly, the
contents of any existing file named ARCHIVE will
not be destroyed until SAVE.

DELETE MODULE, MODULE, ...
MODULE

Delete each listed MODULE from the current archive;
equivalent to xc16-ar -d ARCHIVE MODULE ...
MODULE.
Requires prior use of OPEN or CREATE.

DIRECTORY ARCHIVE (MODULE,
... MODULE) [OUTPUTFILE]

List each named MODULE present in ARCHIVE. The
separate command VERBOSE specifies the form of
the output: when verbose output is off, output is like
that of xc16-ar -t ARCHIVE MODULE....
When verbose output is on, the listing is like
xc16-ar -tv ARCHIVE MODULE....
Output normally goes to the standard output stream;
however, if you specify OUTPUTFILE as a final
argument, the 16-bit archiver/librarian directs the out-
put to that file.

END Exit from the archiver with a 0 exit code to indicate
successful completion. This command does not save
the output file; if you have changed the current
archive since the last SAVE command, those
changes are lost.

EXTRACT MODULE, MODULE,
... MODULE

Extract each named MODULE from the current
archive, writing them into the current directory as
separate files. Equivalent to xc16-ar -x
ARCHIVE MODULE....
Requires prior use of OPEN or CREATE.

LIST Display full contents of the current archive, in “ver-
bose” style regardless of the state of VERBOSE. The
effect is like xc16-ar tv ARCHIVE. (This single
command is a 16-bit archiver/librarian enhancement,
rather than present for MRI compatibility.)
Requires prior use of OPEN or CREATE.

OPEN ARCHIVE Opens an existing archive for use as the current
archive (required for many other commands). Any
changes as the result of subsequent commands will
not actually affect ARCHIVE until you next use
SAVE.

REPLACE MODULE, MODULE,
... MODULE

In the current archive, replace each existing
MODULE (named in the REPLACE arguments) from
files in the current working directory. To execute this
command without errors, both the file, and the mod-
ule in the current archive, must exist.
Requires prior use of OPEN or CREATE.

VERBOSE Toggle an internal flag governing the output from
DIRECTORY. When the flag is on, DIRECTORY out-
put matches output from xc16-ar -tv

SAVE Commits your changes to the current archive and
actually saves it as a file with the name specified in
the last CREATE or OPEN command.
Requires prior use of OPEN or CREATE.

TABLE 14-3: ARCHIVER SCRIPTS COMMANDS (CONTINUED)

Option Function
DS52106A-page 236 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Chapter 15. Other Utilities
15.1 INTRODUCTION
This chapter discusses general information about other utilities for PIC24 MCUs and
dsPIC DSCs.

15.2 HIGHLIGHTS
In addition to the archiver/librarian, other utilities are tools available for use with the
assembler and/or linker.

TABLE 15-1: AVAILABLE UTILITIES
Utility Description

xc16-bin2hex* Converts a linked object file into an Intel® hex file.
xc16-nm Lists symbols from an object file.
xc16-objdump Displays information about object files.
xc16-ranlib Generates an index from the contents of an archive and stores it

in the archive.
xc16-strings Prints the printable character sequences.
xc16-strip Discards all symbols from an object file.
*See the “MPLAB XC16 C Compiler User’s Guide” (DS52071) for an overview of the
tools process flow.
 2013 Microchip Technology Inc. DS52106A-page 237

16-Bit Assembler, Linker and Utilities User’s Guide
15.3 XC16-BIN2HEX UTILITY

15.3.1 Introduction
The binary-to-hexadecimal (xc16-bin2hex) utility converts binary files (from the
16-bit linker) to Intel hex format files, suitable for loading into device programmers.

15.3.2 Highlights
The following topics are covered in this section:
• Input/Output Files
• Syntax
• Options

15.3.3 Input/Output Files
• Input: ELF or COFF formatted binary object files
• Output: Intel hex files
By default, object files are processed in the ELF format. To specify ELF or COFF format
explicitly, use the -omf option on the command line, as shown:
xc16-bin2hex -omf=coff file1.out
xc16-bin2hex -omf=elf file2.out

Alternatively, the environment variable XC16_OMF may be used to specify object file
format for the dsPIC30F language tools.
Because the Intel hex file format is byte-oriented, and the 16-bit PC is not, program
memory sections require special treatment. Each 24-bit program word is extended to
32 bits by inserting a so-called “phantom byte”. Each program memory address is mul-
tiplied by 2 to yield a byte address.
For example, a section that is located at 0x100 in program memory will be represented
in the hex file as 0x200. Consider the following assembly language source:
; file test.s
.section foo,code,address(0x100)
.pword 0x112233

The following commands will assemble the source file and create an Intel hex file:
xc16-as -o test.o test.s
xc16-bin2hex test.o

The file “test.hex” will be produced, with the following contents:
:020000040000fa
:040200003322110096
:00000001FF

Notice that the data record (line 2) has a load address of 0200, while the source code
specified address 0x100. Note also that the data is represented in “little-endian” format,
meaning the least significant byte appears first. The phantom byte appears last, just
before the checksum.

15.3.4 Syntax
Command line syntax is:
xc16-bin2hex object_file [-v] [-a] [-u] [-omf=format]

Example 15.1: hello.cof
Convert the absolute COFF executable file hello.cof to hello.hex
xc16-bin2hex hello.cof
DS52106A-page 238 2013 Microchip Technology Inc.

Other Utilities
15.3.5 Options
The following options are supported.

EXAMPLE 15-2: -va OPTION OUTPUT

writing hello.hex

section PC address byte address length (w/pad) actual length (dec)
------- ---------- ------------ -------------- --------------------
.reset 0 0 0x8 0x6 (6)
.ivt 0x4 0x8 0xf8 0xba (186)
.aivt 0x84 0x108 0xf8 0xba (186)
.text 0x100 0x200 0xaec 0x831 (2097)
.const 0x676 0xcec 0x10 0xc (12)
.dinit 0x67e 0xcfc 0x104 0xc3 (195)
.text 0x700 0xe00 0x14 0xf (15)
.isr 0x70a 0xe14 0x4 0x3 (3)

Total program memory used (bytes): 0xa8c (2700)

TABLE 15-2: xc16-bin2hex OPTIONS
Option Function

object_file -a Sort the contents of the object file in ascending address order.
For a summary of the object file contents, add the -v option
(-va).

-omf=format Specify object file format. The following formats are supported:
ELF, COFF. Format names are case-insensitive. ELF in the
default.

-u Use upper-case hexadecimal digits
-v Print a table of diagnostic information to standard output in the

format shown in Example 15-2.
 2013 Microchip Technology Inc. DS52106A-page 239

16-Bit Assembler, Linker and Utilities User’s Guide
15.4 XC16-NM UTILITY

15.4.1 Introduction
The xc16-nm utility produces a list of symbols from object files. Each item in the list
consists of the symbol value, symbol type and symbol name.

15.4.2 Highlights
The following topics are covered in this section:
• Input/Output Files
• Syntax
• Options
• Output Formats

15.4.3 Input/Output Files
• Input: Object archive files
• Output: Object archive files. If no object files are listed as arguments, xc16-nm

assumes the file a.out.

15.4.4 Syntax
Command line syntax is:
xc16-nm [-A | -o | --print-file-name]
 [-a | --debug-syms] [-B]
 [--defined-only] [-u | --undefined-only]
 [-f format | --format=format] [-g | --extern-only]
 [--help] [-l | --line-numbers]
 [-n | -v | --numeric-sort] [-omf=format]
 [-p | --no-sort]
 [-P | --portability] [-r | --reverse-sort]
 [-s --print-armap] [--size-sort]
 [-t radix | --radix=radix] [-V | --version]
 [OBJFILE...]
DS52106A-page 240 2013 Microchip Technology Inc.

Other Utilities
15.4.5 Options
Long and short forms of options, shown in Table 15-3 as alternatives, are equivalent.

TABLE 15-3: xc16-nm OPTIONS
Option Function

-A
-o
--print-file-name

Precede each symbol by the name of the input file (or
archive member) in which it was found, rather than identify-
ing the input file once only, before all of its symbols.

-a
--debug-syms

Display all symbols, even debugger-only symbols; normally
these are not listed.

-B The same as --format=bsd.
--defined-only Display only defined symbols for each object file.
-u
--undefined-only

Display only undefined symbols (those external to each
object file).

-f format
--format=format

Use the output format format, which can be bsd, sysv
or posix. The default is bsd. Only the first character of
format is significant; it can be either upper or lower case.

-g
--extern-only

Display only external symbols.

--help Show a summary of the options to xc16-nm and exit.
-l
--line-numbers

For each symbol, use debugging information to try to find a
filename and line number. For a defined symbol, look for the
line number of the address of the symbol. For an undefined
symbol, look for the line number of a relocation entry that
refers to the symbol. If line number information can be
found, print it after the other symbol information.

-n
-v
--numeric-sort

Sort symbols numerically by their addresses, rather than
alphabetically by their names.

-omf=format Specify object file format. The following formats are sup-
ported: ELF, COFF. Format names are case-insensitive.
ELF in the default.

-p
--no-sort

Do not bother to sort the symbols in any order; print them in
the order encountered.

-P
--portability

Use the POSIX.2 standard output format instead of the
default format. Equivalent to -f posix.

-r
--reverse-sort

Reverse the order of the sort (whether numeric or alpha-
betic); let the last come first.

-s
--print-armap

When listing symbols from archive members, include the
index: a mapping (stored in the archive by xc16-ar or
xc16-ranlib) of which modules contain definitions for
which names.

--size-sort Sort symbols by size. The size is computed as the differ-
ence between the value of the symbol and the value of the
symbol with the next higher value. The size of the symbol is
printed, rather than the value.

-t radix
--radix=radix

Use radix as the radix for printing the symbol values. It
must be d for decimal, o for octal or x for hexadecimal.

-V
--version

Show the version number of xc16-nm and exit.
 2013 Microchip Technology Inc. DS52106A-page 241

16-Bit Assembler, Linker and Utilities User’s Guide
15.4.6 Output Formats
The symbol value is in the radix selected by the options, or hexadecimal by default.
If the symbol type is lowercase, the symbol is local; if uppercase, the symbol is global
(external). Table 15-4 shows the symbol types.

EXAMPLE 15-3: XC16-NM OUTPUT

00000474 T _fclose
0000023e T _fputc
000001b2 T _fputs
0000051e T _free
00000700 T _main
000003bc T _malloc
00000334 T _memcpy
00000198 T _puts
0000061a W _remove
0000062c W _sbrk
00000326 T _strlen
00000310 T _strrchr
000005a0 W _write

TABLE 15-4: SYMBOL TYPES
Symbol Description

A The symbol’s value is absolute, and will not be changed by further linking.
B The symbol is in the uninitialized data section (known as BSS).
C The symbol is common. Common symbols are uninitialized data. When

linking, multiple common symbols may appear with the same name. If the
symbol is defined anywhere, the common symbols are treated as unde-
fined references.

D The symbol is in the initialized data section.
N The symbol is a debugging symbol.
R The symbol is in a read only data section.
T The symbol is in the text (code) section.
U The symbol is undefined.
V The symbol is a weak object. When a weak defined symbol is linked with

a normal defined symbol, the normal defined symbol is used with no error.
When a weak undefined symbol is linked and the symbol is not defined,
the value of the weak symbol becomes zero with no error.

W The symbol is a weak symbol that has not been specifically tagged as a
weak object symbol. When a weak defined symbol is linked with a normal
defined symbol, the normal defined symbol is used with no error. When a
weak undefined symbol is linked and the symbol is not defined, the value
of the weak symbol becomes zero with no error.

? The symbol type is unknown, or object file format specific.
DS52106A-page 242 2013 Microchip Technology Inc.

Other Utilities
15.5 XC16-OBJDUMP UTILITY

15.5.1 Introduction
The xc16-objdump utility displays information about one or more object files. The
options control what particular information to display.

15.5.2 Highlights
The following topics are covered in this section:
• Input/Output Files
• Syntax
• Options

15.5.3 Input/Output Files
• Input: Object archive files
• Output: Object archive files. If no object files are listed as arguments, xc16-nm

assumes the file a.out.

15.5.4 Syntax
Command line syntax is:
xc16-objdump [-a | --archive-headers]
 [-d | --disassemble]
 [-D | --disassemble-all]
 [-EB | -EL | --endian={big | little }]
 [-f | --file-headers]
 [--file-start-context]
 [-g | --debugging]
 [-h | --section-headers | --headers]
 [-H | --help]
 [-j name | --section=name]
 [-l | --line-numbers]
 [-M options | --disassembler-options=options]
 [-omf=format]
 [--prefix-addresses]
 [-r | --reloc]
 [-s | --full-contents]
 [-S | --source]
 [--[no-]show-raw-insn]
 [--start-address=address]
 [--stop-address=address]
 [-t | --syms]
 [-V | --version]
 [-w | --wide]
 [-x | --all-headers]
 [-z | --disassemble-zeroes]
 OBJFILE...

OBJFILE… are the object files to be examined. When you specify archives,
xc16-objdump shows information on each of the member object files.
 2013 Microchip Technology Inc. DS52106A-page 243

16-Bit Assembler, Linker and Utilities User’s Guide
15.5.5 Options
The long and short forms of options, shown in Table 15-5, as alternatives, are equiva-
lent. At least one of the following options -a, -d, -D, -f, -g, -G, -h, -H,
-p, -r, -R, -S, -t, -T, -V or -x must be given.

TABLE 15-5: xc16-objdump OPTIONS

Option Function
-a
--archive-header

If any of the OBJFILE files are archives, display the
archive header information (in a format similar to ls
-l). Besides the information you could list with
xc16-ar tv, xc16-objdump -a shows the object
file format of each archive member.

-d
--disassemble

Display the assembler mnemonics for the machine
instructions from OBJFILE. This option only disas-
sembles those sections that are expected to contain
instructions.

-D
--disassemble-all

Like -d, but disassemble the contents of all sections,
not just those expected to contain instructions.

-EB
-EL
--endian={big|little}

Specify the endianness of the object files. This only
affects disassembly. This can be useful when disas-
sembling a file format that does not describe endian-
ness information, such as S-records.

-f
--file-header

Display summary information from the overall header
of each of the OBJFILE files.

--file-start-context Specify that when displaying inter-listed source
code/disassembly (assumes ‘-S’) from a file that has
not yet been displayed, extend the context to the start
of the file.

-g
--debugging

Display debugging information. This attempts to parse
debugging information stored in the file and print it out
using a C like syntax. Only certain types of debugging
information have been implemented.

-h
--section-header
--header

Display summary information from the section head-
ers of the object file.

-H
--help

Print a summary of the options to xc16-objdump and
exit.

-j name
--section=name

Display information only for section name.

-l
--line-numbers

Label the display (using debugging information) with
the filename and source line numbers corresponding
to the object code or relocs shown. Only useful with
-d, -D or -r.

-M options
--disassembler-
 options=options

Pass target specific information to the disassembler.
The dsPIC30F device supports the following target
specific options:
symbolic - Will perform symbolic disassembly.

-omf=format Specify object file format. The following formats are
supported: ELF, COFF. Format names are case-insen-
sitive. ELF in the default.

--prefix-addresses When disassembling, print the complete address on
each line. This is the older disassembly format.
DS52106A-page 244 2013 Microchip Technology Inc.

Other Utilities
-r
--reloc

Print the relocation entries of the file. If used with -d
or -D, the relocations are printed interspersed with the
disassembly.

-s
--full-contents

Display the full contents of any sections requested.

-S
--source

Display source code intermixed with disassembly, if
possible. Implies -d.

--show-raw-insn When disassembling instructions, print the instruction
in hex, as well as in symbolic form. This is the default
except when --prefix-addresses is used.

--no-show-raw-insn When disassembling instructions, do not print the
instruction bytes. This is the default when
--prefix-addresses is used.

--start-address=addre
ss

Start displaying data at the specified address. This
affects the output of the -d, -r and -s options.

--stop-address=addres
s

Stop displaying data at the specified address. This
affects the output of the -d, -r and -s options.

-t
--syms

Print the symbol table entries of the file. This is similar
to the information provided by the xc16-nm program.

-V
--version

Print the version number of xc16-objdump and exit.

-w
--wide

Format some lines for output devices that have more
than 80 columns.

-x
--all-header

Display all available header information, including the
symbol table and relocation entries. Using -x is equiv-
alent to specifying all of -a -f -h -r -t.

-z
--disassemble-zeroes

Normally, the disassembly output will skip blocks of
zeroes. This option directs the disassembler to disas-
semble those blocks, just like any other data.

TABLE 15-5: xc16-objdump OPTIONS (CONTINUED)

Option Function
 2013 Microchip Technology Inc. DS52106A-page 245

16-Bit Assembler, Linker and Utilities User’s Guide
EXAMPLE 15-4: -h OUTPUT

hello.out: file format coff-pic30

Sections:
Idx Name Size VMA LMA File off Algn
 0 .reset 00000004 00000000 00000000 00000288 2**1
 CONTENTS, ALLOC, LOAD, CODE
 1 .text 00000576 00000100 00000100 00000290 2**1
 CONTENTS, ALLOC, LOAD, CODE
 2 .comment 0000005e 00000000 00000000 00000d7c 2**1
 CONTENTS, NEVER_LOAD
 3 .ivt 0000007c 00000004 00000004 00000e38 2**1
 CONTENTS, ALLOC, LOAD, CODE
 4 .aivt 0000007c 00000084 00000084 00000f30 2**1
 CONTENTS, ALLOC, LOAD, CODE
 5 __c30_signature 0000007e 0000005e 0000005e 00001028 2**1
 CONTENTS, DEBUGGING
 6 .data 0000008e 00000800 00000800 00001124 2**1
 CONTENTS, ALLOC, DATA, NEVER_LOAD
 7 .bss 00000002 0000088e 0000088e 00000000 2**1
 ALLOC
 8 .data 00000002 00000890 00000890 00001240 2**1
 CONTENTS, ALLOC, DATA, NEVER_LOAD
 9 .bss 00000002 00000892 00000892 00000000 2**1
 ALLOC
 10 .heap 00000080 00000894 00000894 00000000 2**1
 ALLOC
 11 .const 00000008 00008676 00000676 00001244 2**1
 CONTENTS, ALLOC, LOAD, READONLY, PSV
 12 .dinit 00000082 0000067e 0000067e 00001254 2**1
 CONTENTS, ALLOC, LOAD, CODE
 13 .text 0000000a 00000700 00000700 00001358 2**1
 CONTENTS, ALLOC, LOAD, CODE
 14 .isr 00000002 0000070a 0000070a 0000136c 2**1
 CONTENTS, ALLOC, LOAD, CODE
DS52106A-page 246 2013 Microchip Technology Inc.

Other Utilities
15.6 XC16-RANLIB UTILITY

15.6.1 Introduction
The xc16-ranlib utility generates an index to the contents of an archive and stores
it in the archive. The index lists each symbol defined by a member of an archive that is
a relocatable object file. You may use xc16-nm -s or xc16-nm --print-armap to
list this index. An archive with such an index speeds up linking to the library and allows
routines in the library to call each other without regard to their placement in the archive.
Running xc16-ranlib is completely equivalent to executing xc16-ar -s (i.e., the
16-bit archiver/librarian with the -s option).

15.6.2 Highlights
The following topics are covered in this section:
• Input/Output Files
• Syntax
• Options

15.6.3 Input/Output Files
• Input: Archive files
• Output: Archive files

15.6.4 Syntax
Command line syntax is:
xc16-ranlib [-omf=format] [-v | -V | --version] ARCHIVE

15.6.5 Options
The long and short forms of options, shown in Table 15-6 as alternatives, are equiva-
lent.

TABLE 15-6: xc16-ranlib OPTIONS
Option Function

-omf=format Specify object file format. The following formats are supported:
ELF, COFF. Format names are case-insensitive. ELF in the
default.

-v
-V
--version

Show the version number of xc16-ranlib
 2013 Microchip Technology Inc. DS52106A-page 247

16-Bit Assembler, Linker and Utilities User’s Guide
15.7 XC16-STRINGS UTILITY

15.7.1 Introduction
For each file given, the xc16-strings utility prints the printable character sequences
that are at least 4 characters long (or the number given in the options) and are followed
by an unprintable character. By default, it only prints the strings from the initialized and
loaded sections of object files; for other types of files, it prints the strings from the whole
file.
xc16-strings is mainly useful for determining the contents of non-text files.

15.7.2 Highlights
The following topics are covered in this section:
• Input/Output Files
• Syntax
• Options

15.7.3 Input/Output Files
• Input: Any files
• Output: Standard output

15.7.4 Syntax
Command line syntax is:
xc16-strings [-a | --all | -] [-f | --print-file-name]
 [--help] [-min-len | -n min-len | --bytes=min-len]
 [-omf=format] [-t radix | --radix=radix]
 [-v | --version] FILE...
DS52106A-page 248 2013 Microchip Technology Inc.

Other Utilities
15.7.5 Options
The long and short forms of options, shown in Table 15-7 as alternatives, are
equivalent.

TABLE 15-7: xc16-strings OPTIONS

Option Function
-a
--all
-

Do not scan only the initialized and loaded sections of
object files; scan the whole files.

-f
--print-file-name

Print the name of the file before each string.

--help Print a summary of the program usage on the standard out-
put and exit.

-min-len
-n min-len
--bytes=min-len

Print sequences of characters that are at least -min-len
characters long, instead of the default 4.

-omf=format Specify object file format. The following formats are sup-
ported: ELF, COFF. Format names are case-insensitive.
ELF in the default.

-t radix
--radix=radix

Print the offset within the file before each string. The single
character argument specifies the radix of the offset: o for
octal, x for hexadecimal, or d for decimal.

-v
--version

Print the program version number on the standard output
and exit.
 2013 Microchip Technology Inc. DS52106A-page 249

16-Bit Assembler, Linker and Utilities User’s Guide
15.8 XC16-STRIP UTILITY

15.8.1 Introduction
The xc16-strip utility discards all symbols from the object and archive files
specified. At least one file must be given. xc16-strip modifies the files named in its
argument, rather than writing modified copies under different names.

15.8.2 Highlights
The following topics are covered in this section:
• Input/Output Files
• Syntax
• Options

15.8.3 Input/Output Files
• Input: Object or archive files
• Output: Object or archive files. If no object or archive files are listed as arguments,
xc16-strip assumes the file a.out.

15.8.4 Syntax
Command line syntax is:
xc16-strip [-g | -S | --strip-debug] [--help]
 [-K symbolname | --keep-symbol=symbolname]
 [-N symbolname | --strip-symbol=symbolname]
 [-o file] [-omf=format]
 [-p | --preserve-dates]
 [-R sectionname | --remove-section=sectionname]
 [-s | --strip-all] [--strip-unneeded]
 [-v | --verbose] [-V | --version]
 [-x | --discard-all] [-X | --discard-locals]
 OBJFILE...
DS52106A-page 250 2013 Microchip Technology Inc.

Other Utilities
15.8.5 Options
The long and short forms of options, shown in Table 15-8 as alternatives, are equivalent.

TABLE 15-8: xc16-strip OPTIONS

Option Function
-g
-S
--strip-debug

Remove debugging symbols only.

--help Show a summary of the options to xc16-strip and exit.
-K symbolname
--keep-symbol=symbolname

Keep only symbol symbolname from the source file. This option
may be given more than once.

-N symbolname
--strip-symbol=symbolname

Remove symbol symbolname from the source file. This option
may be given more than once, and may be combined with strip
options other than -K.

-o file Put the stripped output in file, rather than replacing the exist-
ing file. When this argument is used, only one OBJFILE argu-
ment may be specified.

-omf=format Specify object file format. The following formats are supported:
ELF, COFF. Format names are case-insensitive. ELF in the
default.

-p
--preserve-dates

Preserve the access and modification dates of the file.

-R sectionname
--remove-section=sectionname

Remove any section named sectionname from the output file.
This option may be given more than once. Note that using this
option inappropriately may make the output file unusable.

-s
--strip-all

Remove all symbols.

--strip-unneeded Remove all symbols that are not needed for relocation process-
ing.

-v
--verbose

Verbose output: list all object files modified. In the case of
archives, xc16-strip -v lists all members of the archive.

-V
--version

Show the version number for xc16-strip.

-x
--discard-all

Remove non-global symbols.

-X
--discard-locals

Remove compiler-generated local symbols.
(These usually start with L or “.”.)
 2013 Microchip Technology Inc. DS52106A-page 251

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 252 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Part 4 – Appendices
Appendix A. Deprecated Features.. 255
Appendix B. Useful Tables .. 257
Appendix C. GNU Free Documentation License ... 276
 2013 Microchip Technology Inc. DS52106A-page 253

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 254 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Appendix A. Deprecated Features
A.1 INTRODUCTION
The features described below are considered to be obsolete and have been replaced
with more advanced functionality. Projects which depend on deprecated features will
work properly with versions of the language tools cited. The use of a deprecated fea-
ture will result in a warning; programmers are encouraged to revise their projects in
order to eliminate any dependency on deprecated features. Support for these features
may be removed entirely in future versions of the language tools.

A.2 HIGHLIGHTS
Topics covered in this appendix are:
• Assembler Directives that Define Sections
• Reserved Section Names with Implied Attributes
• Environmental Variables

A.3 ASSEMBLER DIRECTIVES THAT DEFINE SECTIONS
The following .section directive format was deprecated in v1.30. The new directive
format may be found in Section 4.2 “Directives that Define Sections”.

.section name [, “flags”]

Definition
Assembles the following code into a section named name. If the optional argument is
quoted, it is taken as flags to use for the section. Each flag is a single character. The
following flags are recognized:

If the n flag is used by itself, the section defaults to uninitialized data.
If no flags are specified, the default flags depend upon the section name. If the section
name is not recognized, the default will be for the section to be loadable data.

b bss section (uninitialized data)
n Section is not loaded
d Data section (initialized data)
r Read-only data section (PSV window)
x Executable section
 2013 Microchip Technology Inc. DS52106A-page 255

16-Bit Assembler, Linker and Utilities User’s Guide
The following section names are recognized:

Example
.section .const, "r"
 ; The following symbols (C1 and C2) will be placed
 ; in the named section ".const".
C1: .word 0x1234
C2: .word 0x5678

A.4 RESERVED SECTION NAMES WITH IMPLIED ATTRIBUTES
Implied attributes for the section names in the table below were deprecated in v1.30.

See Section 4.2 “Directives that Define Sections” for more information.

A.5 ENVIRONMENTAL VARIABLES
The environment variable PIC30_OMF was used to specify object file format for the
16-bit language tools. Now use XC16_OMF.

TABLE A-1: SECTION NAMES
Section Name Default Flag

.text x

.data d

.bss b

Note: Ensure that double quotes are used around flags. If the optional argument
to the .section directive is not quoted, it is taken as a sub-section num-
ber. Remember, a single character in single quotes (i.e., ‘b’) is converted by
the preprocessor to a number.

Reserved Name Implied Attribute(s)
.xbss bss, xmemory

.xdata data, xmemory

.nbss bss, near

.ndata data, near

.ndconst data, near

.pbss bss, persist

.dconst data

.ybss bss, ymemory

.ydata data, ymemory

.const psv

.eedata eedata
DS52106A-page 256 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Appendix B. Useful Tables
B.1 INTRODUCTION
Some useful tables are included for reference here.

B.2 HIGHLIGHTS
The tables are:
• ASCII Character Set
• Hexadecimal to Decimal Conversion

B.3 ASCII CHARACTER SET
This table shows the ASCII character set in nibbles.

Most Significant Nibbles

Least
Significant

Nibbles

Hex 0 1 2 3 4 5 6 7
0 NUL DLE Space 0 @ P ` p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f v
7 Bell ETB ' 7 G W g w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y i y
A LF SUB * : J Z j z
B VT ESC + ; K [k {
C FF FS , < L \ l |
D CR GS – = M] m }
E SO RS . > N ^ n ~
F SI US / ? O _ o DEL
 2013 Microchip Technology Inc. DS52106A-page 257

16-Bit Assembler, Linker and Utilities User’s Guide
B.4 HEXADECIMAL TO DECIMAL CONVERSION
This appendix describes how to convert hexadecimal to decimal. For each hex digit,
find the associated decimal value. Add the numbers together.

For example, hex A38F converts to 41871 as follows:

High Byte Low Byte

Hex 1000 Dec Hex 100 Dec Hex 10 Dec Hex 1 Dec

0 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
C 49152 C 3072 C 192 C 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

Hex 1000’s
Digit

Hex 100’s
Digit

Hex 10’s
Digit

Hex 1’s
Digit Result

40960 768 128 15 41871 Decimal
DS52106A-page 258 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Appendix C. GNU Free Documentation License
GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

C.1 PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and use-
ful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

C.2 APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as
“you”. You accept the license if you copy, modify or distribute the work in a way requir-
ing permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
 2013 Microchip Technology Inc. DS52106A-page 259

http://www.gnu.org/copyleft/

16-Bit Assembler, Linker and Utilities User’s Guide
mathematics, a Secondary Section may not explain any mathematics.) The relation-
ship could be a matter of historical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available draw-
ing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly avail-
able DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF pro-
duced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document to
the public.
A section “Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Pre-
serve the Title” of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.
DS52106A-page 260 2013 Microchip Technology Inc.

GNU Free Documentation License
C.3 VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in sec-
tion 3.
You may also lend copies, under the same conditions stated above, and you may pub-
licly display copies.

C.4 COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin distri-
bution of Opaque copies in quantity, to ensure that this Transparent copy will remain
thus accessible at the stated location until at least one year after the last time you dis-
tribute an Opaque copy (directly or through your agents or retailers) of that edition to
the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.
 2013 Microchip Technology Inc. DS52106A-page 261

16-Bit Assembler, Linker and Utilities User’s Guide
C.5 MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under pre-
cisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:
a) Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

b) List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

c) State on the Title page the name of the publisher of the Modified Version, as the
publisher.

d) Preserve all the copyright notices of the Document.
e) Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
f) Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

g) Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

h) Include an unaltered copy of this License.
i) Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

j) Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

k) For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

l) Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

m) Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

n) Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section. Preserve any Warranty Disclaimers.
DS52106A-page 262 2013 Microchip Technology Inc.

GNU Free Documentation License
If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version's license notice. These titles
must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

C.6 COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or pub-
lisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sec-
tions Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must
delete all sections Entitled “Endorsements”.

C.7 COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various doc-
uments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted docu-
ment, and follow this License in all other respects regarding verbatim copying of that
document.
 2013 Microchip Technology Inc. DS52106A-page 263

16-Bit Assembler, Linker and Utilities User’s Guide
C.8 AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Docu-
ment's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

C.9 TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with transla-
tions requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

C.10 TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or dis-
tribute it is void, and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.
DS52106A-page 264 2013 Microchip Technology Inc.

GNU Free Documentation License
C.11 FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free Soft-
ware Foundation. If the Document specifies that a proxy can decide which future ver-
sions of this License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

C.12 RELICENSING
“Massive Multi author Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public whacky that anybody can edit is an example of
such a server. A “Massive Multi author Collaboration” (or “MMC”) contained in the site
means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and sub-
sequently incorporated in whole or in part into the MMC, (1) had no cover texts or invari-
ant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009,provided the MMC is
eligible for relicensing.
 2013 Microchip Technology Inc. DS52106A-page 265

16-Bit Assembler, Linker and Utilities User’s Guide
NOTES:
DS52106A-page 266 2013 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

USER’S GUIDE
Index
Symbols
__CODE_LENGTH .. 205
__DATA_LENGTH... 205
__reset ... 181
_main ... 181
_PROGRAM_END... 205
. .. 41
.abort .. 82
.align ...72, 173
.appline .. 82
.ascii ... 63
.asciz.. 64
.bss ...52, 68
.bss section ...120, 152, 179
.byte ... 64
.comm .. 68
.comm symbol, length .. 68
.const section ..173, 181, 182
.data ... 52
.data section..120, 179
.def ... 84
.dim .. 84
.dinit section ..180, 181
.double ... 65
.eject .. 76
.else ... 77
.elseif.. 77
.end .. 82
.endef ... 84
.endif .. 77
.endm ... 80
.endr ..79, 80, 81
.equ ...40, 70
.equiv ..40, 70
.err.. 77
.error .. 77
.exitm ... 79
.extern .. 68
.fail ... 82
.file ... 84
.fill... 73
.fillupper ... 61
.fillvalue .. 61
.fixed .. 65
.float ... 66
.global .. 68
.globl .. 68
.handle ... 122
.handle section..137, 169, 177
.hword .. 66
.icd section ... 141

.ident .. 82

.if .. 77

.ifdecl.. 78

.ifdef ... 78

.ifndecl.. 78

.ifndef ... 78

.ifnotdecl ... 78

.ifnotdef .. 78

.incbin... 83

.include..32, 33, 83

.init section ... 137

.int .. 66

.irp .. 79

.irpc .. 80

.isr section .. 137

.lcomm.. 68

.lib* section... 137

.libc section .. 137

.libdsp section .. 137

.libm section ... 137

.libperi section .. 137

.line... 84

.list .. 76

.ln ... 82

.loc.. 83

.long ... 66

.macro .. 80

.memory ... 53

.nolist.. 76

.org ... 74

.palign... 73

.pascii ... 64

.pasciz .. 64

.pbss section .. 122

.pbyte ..65, 170, 182

.pfill ... 74

.pfillvalue .. 61

.pincbin... 83

.popsection... 53

.porg ... 74

.print ... 83

.psize.. 76

.pskip.. 75

.pspace... 75

.pstring ... 67

.purgem .. 81

.pushsection ... 53

.pword .. 67, 182

.rept .. 81

.reset section.. 136

.sbttl.. 76

.scl.. 84
 2013 Microchip Technology Inc. DS52106A-page 267

16-Bit Assembler, Linker and Utilities User’s Guide

.section name... 53, 255
.set ..40, 41, 70
.short .. 67
.single... 66
.size.. 85
.sizeof. .. 49
.skip .. 75
.sleb128.. 85
.space... 75
.startof. ... 49
.string ... 67
.struct ... 75
.tag ... 85
.text .. 60
.text section ...120, 136, 179
.title... 76
.type ... 85
.uleb128 ... 85
.user_init section .. 137
.val.. 85
.version... 83
.weak.. 69, 177
.word .. 67
-(-) ... 116
$... 41

A
-A.. 115
-a .. 20
a.out ..17, 31, 119
-a=file ... 28
-ac .. 21
Accessing Data .. 46
Accumulator Select .. 36
-ad .. 23
ADDR ... 164
-ah .. 24
-ai ... 25
Aivt Region... 134
-al ... 25
ALIGN .. 164
alignment gaps... 199
Allocating Memory.. 168
Allocating Unmapped Sections 174
-am ... 25
-an .. 27
ar utility ... 231
--architecture .. 115
Archiver .. 231

Command-Line Interface 233
Scripts ... 235

Arguments .. 36
-as .. 28
ASCII Character Set... 257
Assembler

Command-Line Interface 19
Directives .. 35, 51
Overview ... 15
Source... 88

ASSERT... 158, 164
Assigning Output Sections to Regions................... 173
Assigning Values.. 146

Attributes
Modify Section Types.. 56
Represent Section Types.................................. 55
Reserved Section Names 58

auto_psv... 212, 215

B
Base Memory Addresses 135
bin2hex utility.. 238
Binary File .. 111
BLOCK ... 164
--boot .. 128
Building the Output File .. 169
Built-in Functions.. 163

ADDR .. 164
ALIGN ... 164
ASSERT.. 164
BLOCK .. 164
DEFINED .. 165
LOADADDR .. 165
MAX .. 165
MIN.. 165
NEXT... 165
SIZEOF ... 165

C
Character Constants .. 39
Characters.. 39
--check-sections ... 124
CODE_LENGTH .. 205
Command-Line Information

Linker Scripts .. 132
Command-Line Interface

Archiver/Librarian .. 233
Assembler ... 19
Linker .. 113

Comments .. 36, 144
Computing Absolute Addresses 169
Condition Codes... 35
Conditional Assembly Directives

.else... 77

.elseif... 77

.endif ... 77

.err... 77

.error.. 77

.if ... 77

.ifdecl... 78

.ifdef .. 78

.ifndecl... 78

.ifndef .. 78

.ifnotdecl .. 78

.ifnotdef ... 78
Configuration Region.. 134
Constant Data .. 46
Constants ... 160

Fixed-Point Numbers .. 39
Floating-Point Numbers 38
Integer ... 38
Locating in Program Memory 212
Numeric... 38

COPY ... 155
Creating Special Sections 169
DS52106A-page 268 2013 Microchip Technology Inc.

Index
--cref... 127
CRT0.. 181
crt0 ... 218
CRT1.. 181
Current Address... 41
Custom Linker Script.. 144
Customer Support .. 12

D
-d.. 116
Data Initialization Template.................................... 180
Data Memory ..46, 170
Data Region ... 133
DATA_LENGTH... 205
--data-init .. 122
-dc .. 116
Debug Information Directives

.def .. 84

.dim ... 84

.endef .. 84

.file .. 84

.line ... 84

.scl .. 84

.size .. 85

.sleb128 .. 85

.tag.. 85

.type .. 85

.uleb128 .. 85

.val .. 85
Debugger Memory ... 141
Declare Symbols Directives

.bss ... 68

.comm ... 68

.extern... 68

.global ... 68

.globl ... 68

.lcomm .. 68

.weak .. 69
Define Symbols Directives

.equ... 70

.equiv .. 70

.set .. 70
DEFINED ... 165
--defsym ..32, 116
Destination Select .. 36
Directive ... 35
Directives

Alignment .. 71
Assembler ... 51
Conditional .. 77
Debug Information .. 84
Declare Symbols... 68
Define Symbols... 70
Fill ... 61
Initialization ... 63
Miscellaneous ... 82
Output Listing.. 76
Section.. 52
Substitution/Expansion 79

--discard-all .. 116
--discard-locals... 116

Documentation
Conventions .. 9
Layout ... 7

DOT Symbol... 41
Dot Variable ... 161
-dp .. 116
DSECT ... 155

E
EEDATA Memory Region 135
EEPROM, Locating and Accessing........................ 213
Empty Expressions .. 43
--end-group .. 116
ENTRY ... 158
Escape Characters... 39
Evaluation .. 162
Examples, Linker.. 207
EXCLUDE_FILE... 150
Expressions.. 43
Expressions, Empty ... 43
Expressions, Integer .. 43
EXTERN... 158

F
--fatal-warnings .. 30
File Commands, Linker Scripts

GROUP... 146
INCLUDE .. 145
INPUT ... 145
OUTPUT ... 146
SEARCH_DIR... 146
STARTUP ... 146

File Extensions
Assembler ... 16, 110
Linker .. 110

File Registers ... 35
Files

Library ... 110
Linker Output .. 111
Linker Script .. 110
Listing.. 17
Map ... 111
Object.. 17, 110
Source... 16

Fill Directives
.fillupper .. 61
.fillvalue ... 61
.pfillvalue ... 61

--fill-upper ... 117
Fixed-Point Numbers ... 39
Floating-Point Numbers ... 38
FORCE_COMMON_ALLOCATION 158
--force-exe-suffix .. 117
--force-link .. 117
Functions, Locating .. 209

G
gaps, alignment.. 199
--gc-sections... 117
--general ... 128
Getting a Grip... 177
 2013 Microchip Technology Inc. DS52106A-page 269

16-Bit Assembler, Linker and Utilities User’s Guide
Global Symbols .. 177
GROUP .. 146

H
handle() ...48, 169, 177
Handles .. 177
--handles .. 122
Header ... 88
--heap... 122
Heap Allocation .. 185
--help .. 30, 124
Hexadecimal to Decimal Conversion 258
High-level Source... 24, 88

I
-I ... 32
-i ... 119
ICD Memory ... 141
INCLUDE ... 145
Infix Operators.. 44
INFO... 155
Informational Output Options, Assembler

--fatal-warnings ... 30
--help... 30
-J ... 30
--no-warn... 30
--target-help .. 30
-v ... 31
--verbose... 31
--version .. 31
-W ... 30
--warn.. 30

Informational Output Options, Linker
--check-sections.. 124
--help... 124
--no-check-sections... 124
--no-warn-mismatch .. 124
--report-mem ... 124
-t .. 124
--trace.. 124
--trace-symbol ... 125
-V .. 125
-v ... 125
--verbose... 125
--version .. 125
--warn-common... 125
--warn-once... 126
--warn-section-align... 126
-y ... 125

Initialization Directives
.ascii .. 63
.asciz... 64
.byte .. 64
.double .. 65
.fixed ... 65
.float .. 66
.hword ... 66
.int ... 66
.long .. 66
.pascii .. 64
.pasciz ... 64

.pbyte .. 65

.pstring .. 67

.pword ... 67

.short ... 67

.single.. 66

.string .. 67

.word ... 67
Initialized Data.. 179
INPUT... 145
Input Section

Common Symbols... 152
Example .. 152
Wildcard Patterns.. 151

Input/Output Section Map....................................... 135
Integer Expressions.. 43
Integers .. 38
Internal Preprocessor ... 33
Internet Address, Microchip...................................... 11
Interrupt

Handlers.. 185
Request... 187
Vector Tables .. 142, 185

IRQ ... 187
--isr ... 117
Ivt Region ... 134

J
-J .. 30

K
K Suffix ... 160
--keep-locals... 31

L
-L .. 31, 118
-l ... 118
Label..34, 40, 41, 170, 177
-legacy-libc ... 117
LENGTH... 148
libpic30-coff.a ... 181
libpic30-elf.a ... 181
Librarian ... 231

Command-Line Interface................................. 233
Scripts ... 235

--library ... 118
Library Files.. 110
--library-path ... 118
Link Map Options, Linker

--cref.. 127
-M .. 127
-Map .. 127
--print-map... 127

Linker
Allocation... 172
Command-Line Interface................................. 113
Examples .. 207
File Extensions.. 110
Output File... 111
Overview ... 109
Processing .. 167

Linker Scripts.. 131
DS52106A-page 270 2013 Microchip Technology Inc.

Index
Command Language 144
Command-Line Information 132
Concepts... 144
Contents ... 132
Custom ... 144
Expressions .. 160
File .. 110
File Commands... 145
Other Commands ... 158

Listing Files .. 17
Listing Output Options, Assembler........................... 20

-a=file .. 28
-ac... 21
-ad... 23
-ah... 24
-ai .. 25
-al .. 25
-am.. 25
-an..27, 28
--listing-cont-lines.. 30
--listing-lhs-width... 29
--listing-lhs-width2... 29
--listing-rhs-width .. 29

--listing-cont-lines... 30
--listing-lhs-width .. 29
--listing-lhs-width2 .. 29
--listing-rhs-width.. 29
Literals ... 35
LMA...145, 156, 165
Load Memory Address............................145, 156, 165
LOADADDR ... 165
Loading Input Files... 168
Local Symbols.. 40
Location Counter...137, 161
Location Counter Directives

.align ... 72

.fill ... 73

.org.. 74

.palign ... 73

.pfill ... 74

.porg.. 74

.pskip .. 75

.pspace ... 75

.skip .. 75

.space ... 75

.struct .. 75

M
-M... 127
M Suffix .. 160
-Map... 127
Map File ... 111
Mapping Sections .. 172
MAX ... 165
-MD .. 32
Memory Addressing ... 170
MEMORY Command ... 148
Memory Region Information................................... 133
MIN .. 165
Miscellaneous Directives

.abort... 82

.appline ... 82

.end ... 82

.fail .. 82

.incbin.. 83

.include.. 83

.indent ... 82

.ln .. 82

.loc .. 83

.pincbin.. 83

.print .. 83

.version ... 83
Mnemonic... 34
Modification Options, Archiver/Librarian

a .. 234
b .. 234
c .. 234
f ... 234
i ... 234
l ... 234
N ... 234
o .. 234
P.. 234
S.. 234
s .. 234
u .. 234
V.. 234
v .. 234

myMicrochip Personalized Notification Service 11

N
NEXT.. 165
nm utility ... 240
--no-check-sections.. 124
NOCROSSREFS ... 158
--no-data-init... 122
--no-force-link ... 117
--no-handles ... 122
--noinhibit-exec... 118
--no-isr.. 117
--no-keep-memory.. 118
NOLOAD .. 155
--no-pack-data.. 123
--no-relax.. 31
--no-select-objects.. 119
--no-undefined.. 121
--no-warn.. 30
--no-warn-mismatch ... 124
Numeric Constants... 38

O
-o .. 31, 119
objdump utility .. 243
Object Files .. 17, 110
-omf 17, 31, 118, 239, 241, 244, 247, 249, 251
Operands ... 35
Operators ... 44, 162

Infix ... 44
Prefix... 44

Optimize ... 118
Options, Archiver/Librarian

d .. 233
 2013 Microchip Technology Inc. DS52106A-page 271

16-Bit Assembler, Linker and Utilities User’s Guide
m ... 233
p .. 233
q .. 233
r ... 233
t ... 233
x .. 233

Options, Assembler
Informational Output ... 30
Listing Output .. 20
Other ... 32
Output File Creation.. 31

Options, Linker
Informational Output 124
Link Map Output.. 127
Output File Creation.. 115
Run-time Initialization...................................... 122

Options, pic30-bin2hex
-a... 239
-omf... 239
-u... 239
-v ... 239

Options, pic30-nm
-A .. 241
-a... 241
-B .. 241
--debug-syms .. 241
--defined-only .. 241
--extern-only.. 241
-f .. 241
--format= ... 241
-g... 241
--help... 241
-l .. 241
--line-numbers... 241
-n... 241
--no-sort .. 241
--numeric-sort.. 241
-o... 241
-omf... 241
-P .. 241
-p... 241
--portability .. 241
--print-armap ... 241
--print-file-name... 241
-r.. 241
--radix=.. 241
--reverse-sort .. 241
-s ... 241
--size-sort .. 241
-t .. 241
-u... 241
--undefined-only .. 241
-V .. 241
-v ... 241
--version .. 241

Options, pic30-objdump
-a... 244
--all-header.. 245
--archive-header.. 244
-D .. 244

-d ... 244
--debugging ... 244
--disassemble.. 244
--disassemble-all ... 244
--disassembler-options=.................................. 244
--disassemble-zeroes...................................... 245
-EB .. 244
-EL... 244
--endian=... 244
-f .. 244
--file-header... 244
--file-start-context .. 244
--full-contents .. 245
-g ... 244
-H .. 244
-h ... 244
--header... 244
--help ... 244
-j .. 244
-l .. 244
--line-numbers ... 244
-M .. 244
--no-show-raw-insn ... 245
-omf ... 244
--prefix-addresses ... 244
-r.. 245
--reloc .. 245
-S... 245
-s ... 245
--section= .. 244
--section-header .. 244
--show-raw-insn... 245
--source ... 245
--start-address=... 245
--stop-address=... 245
--syms ... 245
-t .. 245
-V... 245
--version .. 245
-w .. 245
--wide .. 245
-x ... 245
-z ... 245

Options, pic30-ranlib
-omf ... 247
-V... 247
-v ... 247
--version .. 247

Options, pic30-strings
- ... 249
-a ... 249
--all .. 249
--bytes= ... 249
-f .. 249
--help ... 249
-n ... 249
-omf ... 249
--print-file-name... 249
--radix= .. 249
-t .. 249
DS52106A-page 272 2013 Microchip Technology Inc.

Index
-v... 249
--version.. 249

Options, pic30-strip
--discard-all ... 251
--discard-locals ... 251
-g... 251
--help... 251
-K .. 251
--keep-symbol= ... 251
-N .. 251
-o... 251
-omf... 251
-p... 251
--preserve-dates ... 251
-R .. 251
--remove-section=... 251
-S .. 251
-s... 251
--strip-all .. 251
--strip-debug ... 251
--strip-symbol= .. 251
--strip-unneeded ... 251
-V .. 251
-v... 251
--verbose... 251
--version.. 251
-X .. 251
-x... 251

ORG... 148
ORIGIN .. 148
Other Linker Script Commands

ASSERT ... 158
ENTRY.. 158
EXTERN ... 158
FORCE_COMMON_ALLOCATION................ 158
NOCROSSREFS .. 158
OUTPUT_ARCH... 159
OUTPUT_FORMAT.. 159
TARGET ... 159

Other Options, Assembler
--defsym.. 32
-I.. 32
-p... 32
--processor.. 32

OUTPUT .. 146
--output... 119
Output File Creation Options, Assembler

--keep-locals ... 31
-L... 31
-MD ... 32
--no-relax .. 31
-o... 31
-omf... 31
-R .. 31
--relax.. 31
-Z .. 32

Output File Format ... 132
Output File Options, Linker

-(-) .. 116
-A .. 115

--architecture... 115
-d... 116
-dc ... 116
--defsym .. 116
--discard-all ... 116
--discard-locals.. 116
-dp... 116
--end-group ... 116
--fill-upper.. 117
--force-exe-suffix ... 117
--force-link ... 117
--gc-sections ... 117
-i .. 119
--isr.. 117
-L... 118
-l .. 118
-legacy-libc.. 117
--library.. 118
--library-path.. 118
--no-force-link.. 117
--noinhibit-exec ... 118
--no-isr... 117
--no-keep-memory .. 118
--no-select-objects .. 119
--no-undefined... 121
-o... 119
-omf... 118
--output.. 119
--p.. 119
--processor.. 119
-r.. 119
--relocateable .. 119
--retain-symbols-file .. 119
-S .. 120
-s ... 120
--script ... 119
--select-objects.. 119
--start-group .. 116
--strip-all .. 120
--strip-debug.. 120
-T... 119
-Tbss ... 120
-Tdata.. 120
-Ttext... 120
-u... 120
--undefined.. 120
-Ur ... 119
--wrap.. 121
-X .. 116
-x ... 116

Output Formats, pic30-nm
? .. 242
A.. 242
B.. 242
C ... 242
D ... 242
N ... 242
R ... 242
T.. 242
U ... 242
 2013 Microchip Technology Inc. DS52106A-page 273

16-Bit Assembler, Linker and Utilities User’s Guide
V.. 242
W... 242

Output Listing Directives
.eject ... 76
.list... 76
.nolist... 76
.psize... 76
.sbttl .. 76
.title ... 76

Output Section
.reset ... 136
.text ... 136
Address... 153
Attributes... 155
Data .. 154
Description .. 153
Discarding ... 154
Fill ... 156
LMA... 156
Region... 156
Type .. 155

COPY... 155
DSECT... 155
INFO .. 155
NOLOAD.. 155
OVERLAY.. 155

Output Sections in
Configuration Memory..................................... 139

OUTPUT_ARCH .. 159
OUTPUT_FORMAT ... 159
OVERLAY .. 155
Overlay Description.. 157
Overview

Assembler ... 15
Linker .. 109

P
--p ... 119
-p .. 32
--pack-data ... 123
paddr().. 48
Page Size... 47
pic30-ar utility ... 231
pic30-bin2hex utility.. 238
pic30-nm utility ... 240
pic30-objdump utility... 243
pic30-ranlib utility.. 247
pic30-strings utility.. 248
pic30-strip utility.. 250
Pointer .. 46
Precedence .. 44, 162
Prefix Operators ... 44
Preprocessor, Internal .. 33
--print-map.. 127
Processing, Linker.. 167
--processor ... 32, 119
Program Address ... 48
Program Memory.. 46, 170
Program Memory, Locating and Reserving............ 216
Program Region ... 134
Program Space Visibility Window.....47, 157, 171, 173,

181
PROGRAM_END ... 205
PROVIDE ... 147
PSV Window 47, 157, 171, 173, 181, 255
psvoffset()... 47
psvpage() ... 47

R
-R.. 31
-r ... 119
ranlib utility ... 247
Reading, Recommended.. 10
Read-Only Data.. 182
Registers .. 35
Relative Branches .. 31
Relative Calls ... 31
--relax ... 31
relocatable.. 17
Relocatable Code... 208
--relocateable ... 119
--report-mem .. 124
Reserved Names.. 40
RESET ... 185
Reset Region.. 134
Resolving Symbols... 168
--retain-symbols-file.. 119
Run-time Initialization Options, Linker

--data-init ... 122
--handles ... 122
--heap.. 122
--no-data-init.. 122
--no-handles .. 122
--no-pack-data... 123
--pack-data .. 123
--stack ... 123
--stackguard .. 123

Run-time Library Support 181

S
-S.. 120
-s .. 120
--script .. 119
Scripts

Librarian .. 235
Scripts, Archiver/Librarian

ADDLIB ... 235
ADDMOD .. 235
CLEAR .. 235
CREATE.. 235, 236
DELETE .. 236
DIRECTORY ... 236
END... 236
EXTRACT ... 236
LIST... 236
OPEN .. 235, 236
REPLACE ... 236
SAVE... 235, 236
VERBOSE... 236

SEARCH_DIR .. 146
Section Directives

.bss.. 52
DS52106A-page 274 2013 Microchip Technology Inc.

Index
.data.. 52

.memory.. 53

.popsection ... 53

.pushsection.. 53

.section name ..53, 255

.text ... 60
Section of an Expression 162
SECTIONS Command ... 149
--secure.. 128
Security Feature Options, Linker

--boot .. 128
--general ... 128
--secure... 128

--select-objects... 119
SFR Addresses.. 143
SFRs ...133, 143, 168
Simple Assignments .. 146
SIZEOF .. 165
Source Code .. 34
Source Files ... 16
Special Function Registers133, 143, 168
Special Operators .. 45

.sizeof ... 45

.startof ... 45
boot ... 45
dmaoffset .. 45
dmapage... 45
edsoffset ... 45
edspage .. 45
handle ... 45
paddr... 45
psvoffset ... 45
psvpage .. 45
secure ... 45
tbloffset ... 45
tblpage .. 45

SPLIM ...181, 184
--stack .. 123
Stack Allocation ... 184
Stack Pointer...181, 184
Stack Pointer Limit Register............................181, 184
Stack, Locating .. 215
--stackguard ... 123
Standard Data Section Names 179
--start-group ... 116
Starting Address .. 49
STARTUP .. 146
Start-up Code... 180
Start-up Module ... 181
Startup Modules... 132
Statement Format .. 34
strings utility ... 248
strip utility ... 250
--strip-all ... 120
--strip-debug... 120
Substitution/Expansion Directives

.endm.. 80

.endr...79, 80, 81

.exitm .. 79

.irpc ... 80

.macro ... 80

.purgem... 81

.rept... 81
irp .. 79

Subtitle ... 76, 88
Symbol Names... 160
Symbol Table 28, 84, 85, 88, 145, 165
Syntax

Archiver/Librarian.. 232
Assembler ... 19
Linker .. 113
pic30-bin2hex.. 238
pic30-nm ... 240
pic30-objdump .. 243
pic30-ranlib ... 247
pic30-strings.. 248
pic30-strip ... 250

T
-T.. 119
-t ... 124
Table Access Instructions 170
TARGET... 159
--target-help.. 30
tbloffset() .. 46, 170
tblpage() ... 46, 170
-Tbss .. 120
-Tdata... 120
Title .. 76
Title Line... 88
--trace... 124
--trace-symbol .. 125
-Ttext .. 120

U
-u .. 120
--undefined ... 120
-Ur .. 119
User-Defined Section in Data Memory................... 141
User-Defined Section in Program Memory 137
Utilities.. 229

V
-V.. 125
-v .. 31, 125
Variables, Locating... 209
--verbose .. 31, 125
--version ... 31, 125
Virtual Memory Address................................. 145, 156
VMA ... 145, 156

W
-W... 30
W15.. 181, 184
--warn ... 30
--warn-common .. 125
--warn-once .. 126
--warn-section-align.. 126
Watchdog Timer, Disabling 139
Weak Symbols ... 177
Web Site, Microchip ... 11
 2013 Microchip Technology Inc. DS52106A-page 275

16-Bit Assembler, Linker and Utilities User’s Guide
White Space... 34
--wrap ... 121

X
-X.. 116
-x .. 116
X Memory, Creating a Modulo Buffer 214
xc16.. 244, 251

Y
-y .. 125
Y Memory, Creating a Modulo Buffer 215

Z
-Z.. 32
DS52106A-page 276 2013 Microchip Technology Inc.

Index
NOTES:
 2013 Microchip Technology Inc. DS52106A-page 277

DS52106A-page 278 2013 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

11/29/12

http://support.microchip.com
http://www.microchip.com

	MPLAB XC16 Assembler, Linker and Utilities User’s Guide
	Table of Contents
	Preface
	Part 1 – MPLAB XC16 Assembler
	Chapter 1. Assembler Overview
	1.1 Introduction
	1.2 Feature Set
	1.3 Assembler Usage
	1.4 Input/Output Files
	1.4.1 Source File
	1.4.2 Object File
	1.4.3 Listing File

	Chapter 2. Assembler Command Line Options
	2.1 Introduction
	2.2 Command-Line Syntax
	2.3 Options that Modify the Listing Output
	2.3.1 -a[suboption] [=file]
	2.3.2 --listing-lhs-width #
	2.3.3 --listing-lhs-width2 #
	2.3.4 --listing-rhs-width #
	2.3.5 --listing-cont-lines #

	2.4 Options that Control Informational Output
	2.4.1 --fatal-warnings
	2.4.2 --no-warn (-W)
	2.4.3 --warn
	2.4.4 -J
	2.4.5 --help
	2.4.6 --target-help
	2.4.7 --version
	2.4.8 --verbose (-v)

	2.5 Options that Control Output File Creation
	2.5.1 -g
	2.5.2 --keep-locals (-L)
	2.5.3 -o objfile
	2.5.4 -omf = format
	2.5.5 -R
	2.5.6 --relax
	2.5.7 --no-relax
	2.5.8 -Z
	2.5.9 -MD file

	2.6 Other Options
	2.6.1 --defsym sym=value
	2.6.2 -I dir
	2.6.3 -p, --processor=PROC

	Chapter 3. MPLAB XC16 Assembly Language
	3.1 Introduction
	3.2 Internal Preprocessor
	3.3 Source Code Format
	3.3.1 Label
	3.3.2 Mnemonic
	3.3.3 Directive
	3.3.4 Operands
	3.3.5 Arguments
	3.3.6 Comments

	3.4 Characters
	3.4.1 Delimiters
	3.4.2 Special Characters

	3.5 Constants
	3.5.1 Numeric Constants
	3.5.2 Character Constants

	3.6 Symbols
	3.6.1 Reserved Names
	3.6.2 Local Symbols
	3.6.3 Giving Symbols Other Values
	3.6.4 The Special DOT Symbol
	3.6.5 Using Executable Symbols in a Data Context
	3.6.6 Predefined Symbols

	3.7 Expressions
	3.7.1 Empty Expressions
	3.7.2 Integer Expressions

	3.8 Operators
	3.8.1 Prefix Operators
	3.8.2 Infix Operators

	3.9 Special Operators
	3.9.1 Accessing Data in Program Memory
	3.9.2 Obtaining a Program Address of a Symbol or Constant
	3.9.3 Obtaining a Handle to a Program Address
	3.9.4 Obtaining the DMA Offset of a Symbol – PIC24H/dsPIC33F Devices Only
	3.9.5 Obtaining the DMA Offset of a Symbol – PIC24EP/dsPIC33EP Devices Only
	3.9.6 Obtaining the Size of a Specific Section
	3.9.7 Obtaining the Starting Address of a Specific Section
	3.9.8 Accessing Functions in Boot or Secure Segments

	Chapter 4. Assembler Directives
	4.1 Introduction
	4.2 Directives that Define Sections
	4.3 Directives that Fill Program Memory
	4.4 Directives that Initialize Constants
	4.5 Directives that Declare Symbols
	4.6 Directives that Define Symbols
	4.7 Directives that Modify Section Alignment
	4.7.1 Implicit Alignment in Program Memory
	4.7.2 Explicit Section Alignment Directives

	4.8 Directives that Format the Output Listing
	4.9 Directives that Control Conditional Assembly
	4.10 Directives for Substitution/Expansion
	4.11 Miscellaneous Directives
	4.12 Directives for Debug Information

	Chapter 5. Assembler Listing File
	5.1 Introduction
	5.2 Generation
	5.3 Contents

	Chapter 6. Assembler Errors/Warnings/Messages
	6.1 Introduction
	6.2 Fatal Errors
	6.3 Errors
	6.4 Warnings
	6.5 Messages

	Part 2 – MPLAB XC16 Object Linker
	Chapter 7. Linker Overview
	7.1 Introduction
	7.2 Feature Set
	7.3 Linker Usage
	7.4 Input/Output Files
	7.4.1 Object Files
	7.4.2 Library Files
	7.4.3 Linker Script File
	7.4.4 Linker Output File
	7.4.5 Map File

	Chapter 8. Linker Command Line Interface
	8.1 Introduction
	8.2 Highlights
	8.3 Syntax
	8.4 Options that Control Output File Creation
	8.4.1 --architecture arch (-A arch)
	8.4.2 -(archives -), --start-group archives, --end-group
	8.4.3 -d, -dc, -dp
	8.4.4 --defsym sym=expr
	8.4.5 --discard-all (-x)
	8.4.6 --discard-locals (-X)
	8.4.7 --fill=option
	8.4.8 --fill-upper value
	8.4.9 --force-exe-suffix
	8.4.10 --force-link
	8.4.11 --no-force-link
	8.4.12 --gc-sections
	8.4.13 --isr
	8.4.14 --no-isr
	8.4.15 -legacy-libc
	8.4.16 --library libname (-l libname)
	8.4.17 --library-path <dir> (-L <dir>)
	8.4.18 --no-keep-memory
	8.4.19 --noinhibit-exec
	8.4.20 -omf=format
	8.4.21 --output file (-o file)
	8.4.22 -p,--processor PROC
	8.4.23 --relocatable (-r, -i, -Ur)
	8.4.24 --retain-symbols-file file
	8.4.25 --script file (-T file)
	8.4.26 --select-objects
	8.4.27 --no-select-objects
	8.4.28 --smart-io
	8.4.29 --no-smart-io
	8.4.30 --strip-all (-s)
	8.4.31 --strip-debug (-S)
	8.4.32 -Tbss address
	8.4.33 -Tdata address
	8.4.34 -Ttext address
	8.4.35 --undefined symbol (-u symbol)
	8.4.36 --no-undefined
	8.4.37 --wrap symbol

	8.5 Options that Control Run-time Initialization
	8.5.1 --data-init
	8.5.2 --no-data-init
	8.5.3 --handles
	8.5.4 --no-handles
	8.5.5 --heap size
	8.5.6 --pack-data
	8.5.7 --no-pack-data
	8.5.8 --stack size
	8.5.9 --stackguard size

	8.6 Options that Control Informational Output
	8.6.1 --check-sections
	8.6.2 --no-check-sections
	8.6.3 --help
	8.6.4 --no-warn-mismatch
	8.6.5 --report-mem
	8.6.6 --trace (-t)
	8.6.7 --trace-symbol symbol (-y symbol)
	8.6.8 -V
	8.6.9 --verbose
	8.6.10 --version (-v)
	8.6.11 --warn-common
	8.6.12 --warn-once
	8.6.13 --warn-section-align

	8.7 Options that Modify the Link Map Output
	8.7.1 --cref
	8.7.2 --print-map (-M)
	8.7.3 -Map file

	8.8 Options that Specify CodeGuard™ Security Features
	8.8.1 CodeGuard Security Segment Options
	8.8.2 User-Defined Segment Options

	8.9 Options that Control the Preprocessor
	8.9.1 -D<macro>[=value]
	8.9.2 --no-cpp
	8.9.3 --save-gld

	Chapter 9. Linker Scripts
	9.1 Introduction
	9.2 Highlights
	9.3 Overview of Linker Scripts
	9.3.1 Contents
	9.3.2 File Names and Locations

	9.4 Command Line Information
	9.5 Contents of a Linker Script
	9.5.1 Processor and Startup Modules
	9.5.2 Memory Region Information
	9.5.3 Base Memory Addresses
	9.5.4 Input/Output Section Map
	9.5.5 Interrupt Vector Tables
	9.5.6 SFR Addresses

	9.6 Creating a Custom Linker Script
	9.7 Linker Script Command Language
	9.7.1 Basic Linker Script Concepts
	9.7.2 Commands Dealing with Files
	9.7.3 Assigning Values to Symbols
	9.7.4 MEMORY Command
	9.7.5 SECTIONS Command
	9.7.6 Other Linker Script Commands

	9.8 Expressions in Linker Scripts
	9.8.1 Constants
	9.8.2 Symbol Names
	9.8.3 The Location Counter
	9.8.4 Operators
	9.8.5 Evaluation
	9.8.6 The Section of an Expression
	9.8.7 Built-in Functions

	Chapter 10. Linker Processing
	10.1 Introduction
	10.2 Highlights
	10.3 Overview of Linker Processing
	10.3.1 Loading Input Files
	10.3.2 Allocating Memory
	10.3.3 Resolving Symbols
	10.3.4 Creating Special Sections
	10.3.5 Computing Absolute Addresses
	10.3.6 Building the Output File

	10.4 Memory Addressing
	10.4.1 Table Access Instructions
	10.4.2 Program Space Visibility (PSV) Window
	10.4.3 Extended Data Space (EDS) Window

	10.5 Linker Allocation
	10.5.1 Mapping Input Sections to Output Sections
	10.5.2 Assigning Output Sections to Regions
	10.5.3 Allocating Unmapped Sections

	10.6 Global and Weak Symbols
	10.7 Handles
	10.8 Initialized Data
	10.8.1 Standard Data Section Names
	10.8.2 Data Initialization Template
	10.8.3 Run-Time Library Support

	10.9 Read-only Data
	10.10 Stack Allocation
	10.11 Heap Allocation
	10.12 Interrupt Vector Tables
	10.12.1 dsPIC30F DSCs (Non-SMPS) Interrupt Vectors
	10.12.2 dsPIC30F DSCs (SMPS) Interrupt Vectors
	10.12.3 PIC24F MCUs Interrupt Vectors
	10.12.4 dsPIC33F DSCs / PIC24H MCUs Interrupt Vectors

	10.13 Optimizing Memory Usage
	10.13.1 Gaps Between Variables of Different Types
	10.13.2 Gaps Between Aligned Variables
	10.13.3 Gaps Between Input Sections
	10.13.4 Gaps Between Output Sections

	10.14 Boot and Secure Segments
	10.14.1 Specifying the Security Model
	10.14.2 User-Defined Boot and Secure Segments
	10.14.3 Boot and Secure Segment Allocation
	10.14.4 Resolving Symbols

	10.15 Notable Symbols

	Chapter 11. Linker Examples
	11.1 Introduction
	11.2 Highlights
	11.3 Memory Addresses and Relocatable Code
	11.4 Locating a Variable at a Specific Address
	11.5 Locating a Function at a Specific Address
	11.6 Using More than 32K of Constants
	11.6.1 Compiler-Managed Access
	11.6.2 User-Managed Access

	11.7 Locating a Constant at a Specific Address in Program Memory
	11.8 Locating and Accessing Data in EEPROM Memory
	11.9 Creating an Incrementing Modulo Buffer in X Memory
	11.10 Creating a Decrementing Modulo Buffer in Y Memory
	11.11 Locating the Stack at a Specific Address
	11.12 Locating and Reserving Program Memory

	Chapter 12. Linker Map File
	12.1 Introduction
	12.2 Generation
	12.3 Contents

	Chapter 13. Linker Errors/Warnings
	13.1 Introduction
	13.2 Highlights
	13.3 Errors
	13.4 Warnings

	Part 3 – 16-Bit Utilities
	Chapter 14. MPLAB XC16 Object Archiver/Librarian
	14.1 Introduction
	14.2 Highlights
	14.3 Archiver/Librarian and Other Development Tools
	14.4 Feature Set
	14.5 Input/Output Files
	14.6 Syntax
	14.7 Options
	14.8 Scripts

	Chapter 15. Other Utilities
	15.1 Introduction
	15.2 Highlights
	15.3 xc16-bin2hex Utility
	15.3.1 Introduction
	15.3.2 Highlights
	15.3.3 Input/Output Files
	15.3.4 Syntax
	15.3.5 Options

	15.4 xc16-nm Utility
	15.4.1 Introduction
	15.4.2 Highlights
	15.4.3 Input/Output Files
	15.4.4 Syntax
	15.4.5 Options
	15.4.6 Output Formats

	15.5 xc16-objdump Utility
	15.5.1 Introduction
	15.5.2 Highlights
	15.5.3 Input/Output Files
	15.5.4 Syntax
	15.5.5 Options

	15.6 xc16-ranlib Utility
	15.6.1 Introduction
	15.6.2 Highlights
	15.6.3 Input/Output Files
	15.6.4 Syntax
	15.6.5 Options

	15.7 xc16-strings Utility
	15.7.1 Introduction
	15.7.2 Highlights
	15.7.3 Input/Output Files
	15.7.4 Syntax
	15.7.5 Options

	15.8 xc16-strip Utility
	15.8.1 Introduction
	15.8.2 Highlights
	15.8.3 Input/Output Files
	15.8.4 Syntax
	15.8.5 Options

	Part 4 – Appendices
	Appendix A. Deprecated Features
	A.1 Introduction
	A.2 Highlights
	A.3 Assembler Directives that Define Sections
	A.4 Reserved Section Names with Implied Attributes
	A.5 Environmental Variables

	Appendix B. Useful Tables
	B.1 Introduction
	B.2 Highlights
	B.3 ASCII Character Set
	B.4 Hexadecimal to Decimal Conversion

	Appendix C. GNU Free Documentation License
	C.1 PREAMBLE
	C.2 APPLICABILITY AND DEFINITIONS
	C.3 VERBATIM COPYING
	C.4 COPYING IN QUANTITY
	C.5 MODIFICATIONS
	C.6 COMBINING DOCUMENTS
	C.7 COLLECTIONS OF DOCUMENTS
	C.8 AGGREGATION WITH INDEPENDENT WORKS
	C.9 TRANSLATION
	C.10 TERMINATION
	C.11 FUTURE REVISIONS OF THIS LICENSE
	C.12 RELICENSING

	Index
	Worldwide Sales and Service

