

AS5048A/AS5048B

Magnetic Rotary Encoder (14-bit Angular Position Sensor)

General Description

The AS5048 is an easy to use 360° angle position sensor with a 14-bit high resolution output. The maximum system accuracy is 0.05° assuming linearization and averaging is done by the external microcontroller.

The IC measures the absolute position of the magnet's rotation angle and consists of Hall sensors, analog digital converter and digital signal processing. The absolute position information of the magnet is directly accessible over a PWM output and can be read out over a standard SPI or a high speed I²C interface. AS5048A has a SPI interface, AS5048B I²C interface. Both devices offer a PWM output.

The zero position can be programmed via SPI or I²C command. This simplifies the assembly of the complete system because the zero position of the magnet does not need to be mechanically aligned. The sensor tolerates misalignment, air gap variations, temperature variations and as well external magnetic fields. This robustness and wide temperature range (-40°C up to +150°C) of the AS5048 makes the IC ideal for rotation angle sensing in harsh industrial and medical environments. Several AS5048 ICs can be connected in daisy chain for serial data read out. An internal voltage regulator allows the AS5048 to operate at either 3.3 V or 5 V supplies.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

The benefits and features of AS5048A/AS5048B, Magnetic Rotary Encoder (14-bit Angular Position Sensor) are listed below:

Figure 1: Added Value of using AS5048

Benefits	Features
No external programmer needed	Contactless rotary position sensor over 360°
High precision	Immune to external magnetic stray fields
Easy to use	14-bit resolution (0.0219°/LSB)
Low material costs (no shielding)	Standard SPI or I ² C interface and PWM
	Zero position programmable via SPI or I ² C
	Temperature range: -40°C to +150°C

ams Datasheet: 2014-Jun-05 [v1-06] AS5048A/AS5048B – 1

Benefits	Features
	3.3V / 5V compliant
	Package: 14-pin TSSOP (5 x 6.4mm)

Applications

The applications of AS5048 include:

- Robotic joint position detection
- Industrial motor position control
- Medical robots and fitness equipment

Block Diagram

The functional blocks of this device for reference are shown below:

Figure 2: AS5048A Block Diagram

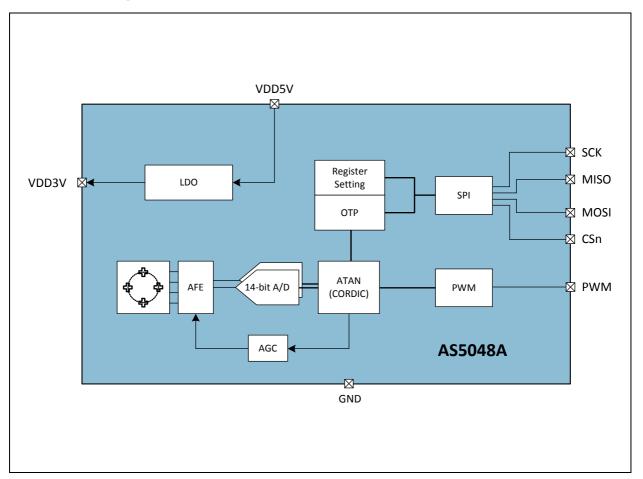
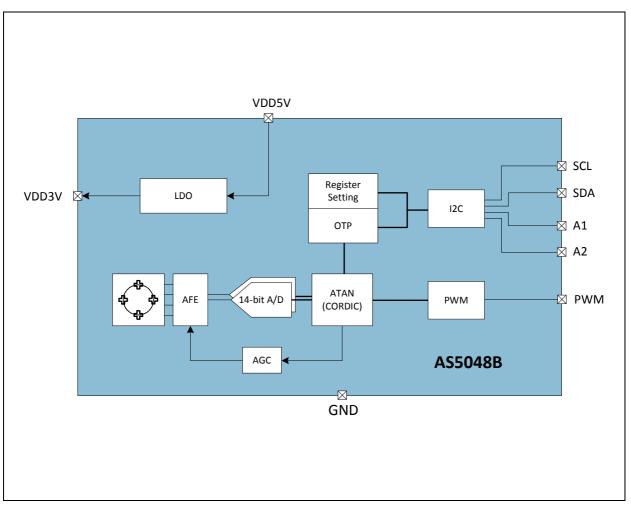



Figure 3: AS5048B Block Diagram

Pin Assignment

The AS5048A/AS5048B pin assignments are described below.

Figure 4: TSSOP14 Pin Configuration

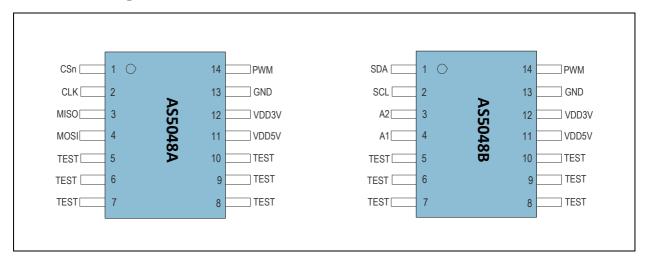


Figure 5: TSSOP14 Pin Description for AS5048A

Pin	AS5048A	Pin Type	Description								
1	CSn	Digital input with schmitt	SPI chip select - active low								
2	CLK	trigger	SPI clock input								
3	MISO	Digital I/O with schmitt trigger in the input path	SPI master in/slave out								
4	MOSI	Digital input with schmitt trigger	SPI master out/slave in								
5	TEST										
6	TEST		Test pins. These pins should be grounded to GND.								
7	TEST	Analog I/O									
8	TEST	Allalog I/O									
9	TEST										
10	TEST										
11	VDD5V		Positive Supply Voltage, 3.0 to 5.5 V								
12	VDD3V	Supply pad	3.3V Regulator output; internally regulated from VDD. Connect to VDD for 3V supply voltage. 10µF capacitor to GND required in 5V operation mode								
13	GND		Negative Supply Voltage (GND)								
14	PWM	Digital output – push-pull	Pulse Width Modulation output								

Figure 6: TSSOP14 Pin Description for AS5048B

Pin	AS5048B	Туре	Description							
1	SDA	Digital I/O with open drain output	Data pin I ² C interface							
2	SCL		I ² C clock input							
3	A2	Digital input with schmitt trigger	I ² C address selection pin 3							
4	A1		I ² C address selection pin 4							
5	TEST									
6	TEST									
7	TEST	Analog I/O	Test pins. These pins should be grounded to GND.							
8	TEST	Allalog I/O	rest pins. These pins should be grounded to give.							
9	TEST									
10	TEST									
11	VDD5V		Positive Supply Voltage, 3.0 to 5.5 V							
12	VDD3V	Supply pad	3.3V Regulator output; internally regulated from VDD. Connect to VDD for 3V supply voltage. 10µF capacitor to GND required in 5V operation mode							
13	GND		Negative Supply Voltage (GND)							
14	PWM	Digital output – push-pull	Pulse Width Modulation output							

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Operating Conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 7:
Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Note							
	Ele	ctrical Pa	rameters									
VDD5V	DC supply voltage at VDD pin	-0.3	7	V								
VDD3V	DC voltage at VDD3V pin	-0.3	5	V								
GND	DC voltage at GND pin	-0.3	0.3	V								
V _{IN}	Input pin voltage		VDD+0.3	V								
I _{SCR}	Input current (latchup immunity)	-100	100	mA	Norm: Jedec 78							
	Electroststic Discharge											
ESD	Electrostatic discharge		± 2	kV	Norm: MIL 883 E method 3015							
	Po	ower Diss	ipation	I								
P _T	Total power dissipation (all supplies and outputs)		150	mW								
	Temperature R	anges and	d Storage Co	ondition	s							
T _{STRG}	Storage temperature	-55	150	°C								
T _{BODY}	Package body temperature		260	°C	The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/JEDEC J-STD-020 "Moisture Solid State Surface Mount Devices". The lead finish from Pb-free leaded packages is matte tin (100%Sn)							
Н	Humidity non-condensing	5	85	%								
MSL	Moisture Sensitive Level		3		Represents a maximum floor life time of 168h							

Electrical Characteristics

All in this specification defined tolerances for external components need to be assured over the whole operation conditions range and also over lifetime.

Operating Conditions

Figure 8: Operating Conditions

Symbol	Parameter	Min	Max	Unit	Note
VDD5V	Positive supply voltage	4.5	5.5	V	5V Operation via LDO
VDD3V		3	3.6	V	LDO output voltage
VDDCORE	Positive core supply voltage	3	3.6	V	
T _{AMB}	Ambient temperature	-40	150	°C	Only for 5V operation. T_amb_max for 3V is 125°C
I _{SUP}	Supply Current		15	mA	

DC/AC Characteristics for Digital Inputs and Outputs

Figure 9: DC/AC Characteristics

Symbol	Parameter	Min	Max	Unit
	CMOS Digital Input with Schmitt Trig	ger: CSn, CLK, MOSI a	and SCL, A1, A2	
V _{IH}	High level input voltage	0.7 * VDDCORE		V
V _{IL}	Low level input voltage		0.3 * VDDCORE	V
I _{LEAK}	Input leakage current		1	μΑ
	CMOS Output: P	WM, MISO, SDA		
V _{OH}	High level output voltage	VDDCORE - 0.5		V
V _{OL}	Low level output voltage		GND+0.4	V
C _L	Capacitive load		50	pF
I _{OUT}	Output current		4	mA

Electrical System Specifications

VDD5V = 5V, $T_{Ambient} = -40$ to +150°C unless noted otherwise.

Figure 10: System Specification

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
Bz	Magnetic input field		30	50	70	mT			
f _{sample}	Output sampling rate		10.2	11.25	12.4	kHz			
RES	Output Resolution			14					
Noise	Sensor output noise	2.73LSB@14bit, rms value			0.06	Deg			
t _{prop}	System propagation delay		90.7	100	110.2	μs			
f _{PWM}	PWM frequency		0.907	1	1.102	kHz			
INL _{OPT} @25°C	Non-linearity, optimum placement of the magnet				± 0.8	Deg			
INL OPT+TEMP	Non-linearity optimum placement of the magnet over the full Temperature Range				±1	Deg			
INL DIS+TEMP	Non-linearity @ displacement of magnet and temperature -40°C to 150°C	Assuming N35H Magnet (D=8mm, H=3mm) 500um displacement in x and y z-distance @ 2000um			±1.2	Deg			
t _{startup}	Startup Time				10	ms			

Functional Description

The AS5048 is a magnetic Hall sensor system manufactured in a CMOS process. A lateral Hall sensor array is used to measure the magnetic field components perpendicular to the surface of the chip. The AS5048 is uses self-calibration methods to eliminate signal offset and sensitivity drifts.

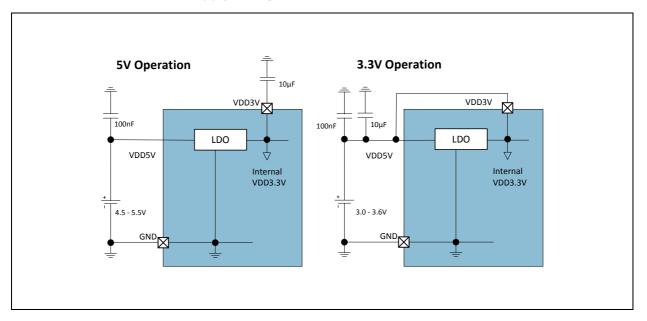
The integrated Hall sensors are placed around the center of the device and deliver a voltage representation of the magnetic flux Bz.

Through Sigma-Delta Analog-to-Digital Converter (ADC) and Digital Signal-Processing (DSP) algorithms, the AS5048 provides accurate high-resolution absolute angular position information. This is executed by a Coordinate Rotation Digital Computer (CORDIC) which calculates the angle and the magnitude of the Hall array signals.

The DSP is also used to provide digital information at the outputs that indicate movements of the magnet towards or away from the device's surface, in the z-axis.

A small diametrically magnetized (two-pole) standard magnet provides the angular position information. Depending on the system requirements different magnet diameters are possible. Additional flexibility is given by the wide range of the magnetic input range. The AS5048 can be combined with NeFeB, SmCo and alternative magnet materials e.g. hard ferrites. The AS5048 provides a 14-bit binary code representing the angular position of the magnet. The type of output is pre-programmed as SPI version A or I²C version B. Simultaneously a PWM output signal is available in 12 bit format.

A simple programming of the zero position is possible over the interface. No additional programmer is needed. The AS5048 uses one time programmable (OTP) fuses for permanent programming of the user settings. The verification is possible over a simple digital readout of the OTP content.



Operation

Supply Voltage Configuration

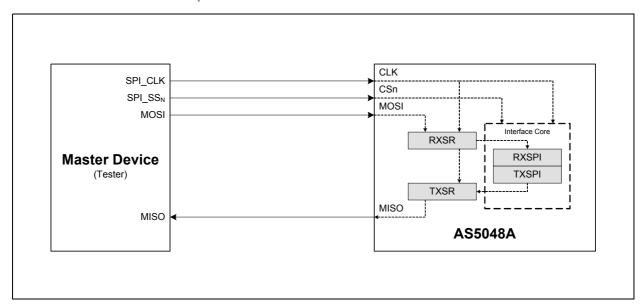
The AS5048 operates at 5V $\pm 10\%$, using an internal Low-Dropout (LDO) voltage regulator. In addition a 3.3V operation is possible. The **VDD3V** output is intended for internal use only. **It must not be loaded with an external load.**

Figure 11: Connections for 5V and 3.3V Supply Voltages

Note(s) and/or Footnote(s):

The pin VDD3V must always be buffered by a 10 μF capacitor in 5V operation. It must not be left floating, as this may cause unstable internal supply voltages which may lead to larger output jitter of the measured angle.
 In 3V operation the VDD3V must be shorted to VDD5V. The ambient temperature T_{AMB} is limited to 125°C in this mode.

SPI Interface


The 16 bit SPI Interface enables read / write access to the register blocks and is compatible to a standard micro controller interface. The SPI is active as soon as **CSn** is pulled low. The AS5048A then reads the digital value on the **MOSI** (master out slave in) input with every falling edge of **CLK** and writes on its **MISO** (master in slave out) output with the rising edge. After 16 clock cycles **CSn** has to be set back to a high status in order to reset some parts of the interface core.

SPI Interface Signals (4-Wire Mode, Wire_mode = 1)

The AS5048A only supports slave operation mode. Therefore **CLK** for the communication as well as the **CSn** signal has to be provided by the test equipment. The following picture shows a basic interconnection diagram with one master and an AS5048A device and a principle schematic of the interface core.

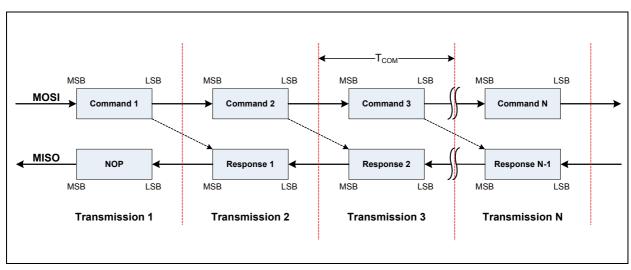


Figure 12: SPI Connection AS5048A with μC

Because the interface has to decode the sent command before it can react and provide data the response of the chip to a specific command applied at a time T can be accessed in the next transmission cycle ending at T + TCOM. The data are sent and read with **MSB first**. Every time the chip is accessed it is sending and receiving data.

Figure 13: SPI Command/Response Data Flow

SPI Timing

Figure 14: SPI Timing Diagram

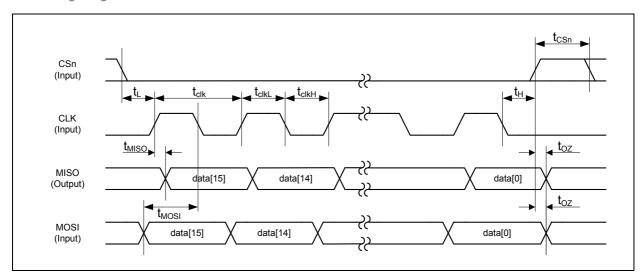
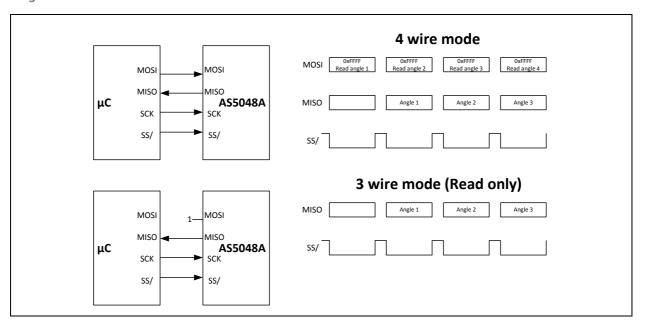
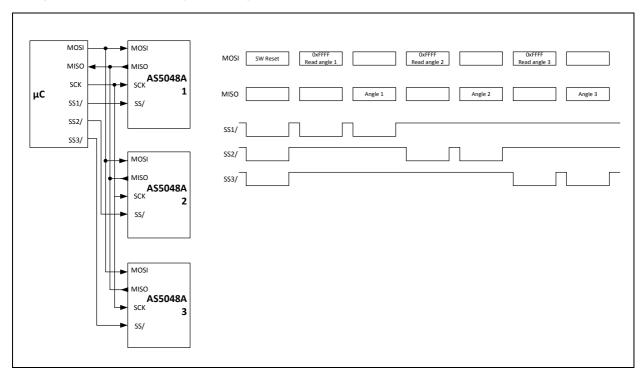


Figure 15: SPI Timing Characteristics


Parameter	Description	Min	Max	Unit
t _L	Time between CSn falling edge and CLK rising edge	350		ns
T _{CLK}	Serial clock period	100		ns
t _{CLKL}	Low period of serial clock	50		ns
t _{CLKH}	High period of serial clock	50		ns
t _H	Time between last falling edge of CLK and rising edge of CSn	50		ns
T _{CSnH}	High time of CSn between two transmissions	350		ns
t _{MOSI}	Data input valid to clock edge	20		ns
t _{MISO}	CLK edge to data output valid		20	ns

SPI Connection to the Host μ C

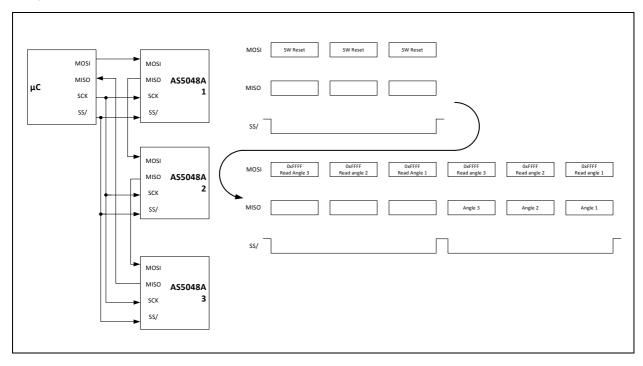
Single Slave Mode


Figure 16: Single Slave Mode

Single Slave Mode: This figure shows the SPI connection to the host μ C using Single Slave Mode.

3 Wire Mode (read only)

Figure 17:
Multiple Slave, n+3 Wire (Separate ChipSelect)



Multiple Slave, n+3 Wire (Separate ChipSelect): This figure shows the SPI connection to the host μ C using 3 Wire mode.

Daisy Chain, 4 Wire

Figure 18: Daisy Chain, 4 Wire

Daisy Chain, 4 Wire: This figure shows the SPI connection to the host µC using Daisy Chain, 4 wire mode.

SPI Communication Command Package

Every command sent to the AS5048A is represented with the following layout.

Figure 19: SPI Command Package

	Command Package															
Bit	MSB	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB
	PAR	RWn		Address<13:0>												
	Bit Definition & Description															
	PAR		Parit	y bit (E	VEN)											
	RWn Indicates read(1) or write(0) command															
	Address 14 bit address code															

Read Package (Value Read from AS5048A)

The read frame always contains two alarm bits, the parity and error flags and the addressed data of the previous read command.

Figure 20: SPI Read Package

	Read Package															
Bit	MSB	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB
	PAR	EF		Data<13:0>												
	Bit Definition & Description															
	PAR		Parity	y bit (E	VEN)											
	EF Error flag indicating a transmission error in a previous host transmission															
	Data 14 bit addressed data															

Write Data Package (Value Written to AS5048A)

The write frame is compatible to the read frame and contains two additional bits, parity flag and R flag.

If the previous command was a write command a second package has to be transmitted.

Figure 21: SPI Write Data Package

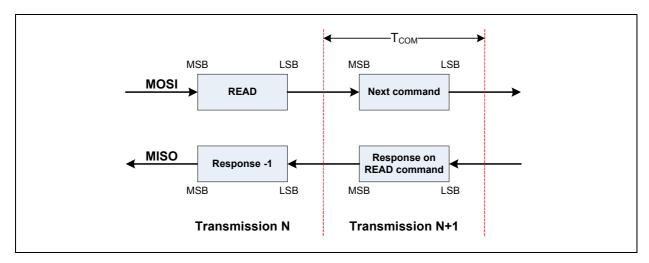
	Data Package															
Bit	MSB	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB
	PAR	R		Data <13:0>												
	Bit Definition & Description															
	PAR		Parity	/ bit (E	VEN)											
	R Has to be 0															
	Data 14 bit data to write to former selected address															

Register Description

Figure 22: SPI Register Map

Address hex	Name	Access Type	Bit Symbol		Default	Description		
		C	ontrol	and Error Registers				
			13					
x0000	NOP R : NOP		0	No operation dummy information				
			0					
			13					
			:	Not used	n.a.			
x0001	Clear Error	R	3			Error Register. All errors		
X0001	Flag	N	2	Parity Error		are cleared by access		
			1	Command Invalid	0			
			0	Framing Error				
			13					
			:	Not used				
			7			Due annous in a control		
			6	Verify		Programming control register.		
	Programming		5	Not used		Programming must be enabled before burning		
x0003	Control	R/W	4	Not used	0	the fuse(s). After programming is a		
			3	Burn		verification mandatory. See programming		
			2	Reserved		procedure.		
			1	neserveu				
	0 Programming Enable							

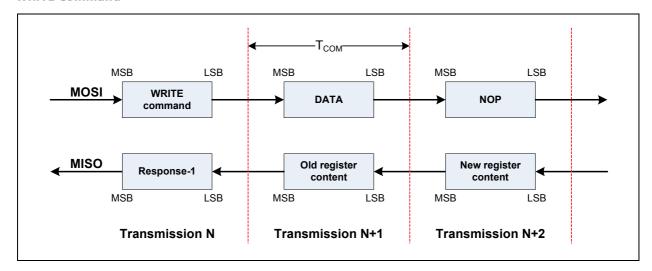
Address hex	Name	Access Type	Bit	Symbol	Default	Description										
		Prog	ramm	able Customer Setting	gs											
			13													
			:	Not used	0											
x0016	OTP Register Zero Position	R/W +	8			Zero Position value high										
20010	Hi	Program	7	Zero Position <13>	0	byte										
			• •	:	:											
			0	Zero Position <6>	0											
			13													
		D 444	:	Not used	0											
x0017	OTP Register Zero Position	R/W +	6			Zero Position remaining										
λουτ/	Low 6 LSBs	Program	5	Zero Position <5>	0	6 lower LSB's										
			:	:	:											
			0	Zero Position <0>	0											
			Rea	adout Registers												
			13	Not used	n.a.											
														12		
			11	Comp High	0	Diagnostics flags										
	Diagnostics +		10	Comp Low	0	g.										
x3FFD	Automatic Gain Control	R	9	COF	0											
	(AGC)		8	OCF	1											
			7	AGC value<7>	1	Automatic Gain Control value.										
				:	:	:	0 decimal represents high magnetic field 255									
			0	AGC value<0>	0	decimal represents low magnetic field										
			13	Magnitude<13>	0											
x3FFE	Magnitude	R	:	:	:	Magnitude information after ATAN calculation										
			0	Magnitude<0>	0											
			13	Angle <13>	0	Angle information after										
x3FFF	Angle	R	:	:	:	ATAN calculation and zero position adder										
			0	Angle<0>	0	zero position addei										



SPI Interface Commands

READ Command

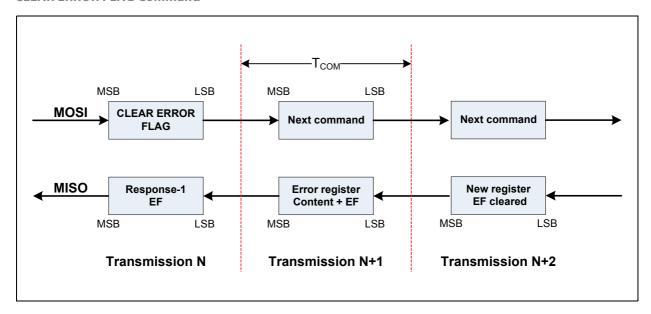
For a single *READ* command two transmission sequences are necessary. The first package written to the AS5048 contains the *READ* command (**MSB-1 high**) and the address the chip has to access, the second package transmitted to the AS5048 device can be *any command* the chip has to process next. The content of the desired register is available in the *MISO* register of the *master device* at the end of the second transmission cycle.


Figure 23: READ Command

WRITE Command

A single WRITE command takes two transmission cycles. With a NOP command after the WRITE command you can verify the sent data with three transmission cycles because the data will be send back during the following command.

Figure 24: WRITE Command



CLEAR ERROR FLAG Command

The CLEAR ERROR FLAG command is implemented as READ command. This command clears the ERROR FLAG which is contained in every READ frame. Before the ERROR FLAG is cleared the error register content comes back with the information which error type was occurred. On the next new READ register the ERROR FLAG is cleared.

Figure 25: CLEAR ERROR FLAG Command

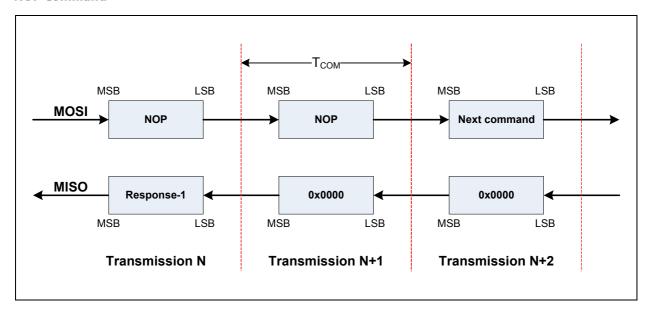
The package necessary to perform a CLEAR ERROR FLAG is built up as follows.

Figure 26: Clear Error Flag Command

	CLEAR ERROR FLAG Command															
Bit	MSB	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB
	PAR	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Possible conditions which force the ERROR FLAG to be set:

- · Wrong parity
- Wrong number of clocks (no full transmission cycle or too many clocks)
- · Invalid command
- · Frame error


Note(s): If the error flag is set to high because of a communication problem the flag remains set until it will be cleared by the *CLERAR ERROR FLAG* command.

NOP Command

The NOP command represents a dummy write to the AS5048.

Figure 27: NOP Command

The NOP command frame looks like follows.

Figure 28: NOP Command

	NOP Command															
Bit	MSB	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The chip's response on this command is 0x0000

I²C Interface

The AS5048B supports 2-wire high-speed I^2C protocol in device mode. The host MCU (master) has to initiate the data transfers. The 7-bit device address of the slave depends on the state of the OTP I^2C register 21 (0x15) bit 0...4 + 2 I^2C address selection pin 3 and 4.

Supported modes:

- · Random/Sequential Read
- Byte/Page Write
- Standard: 0 to 100kHz clock frequency (slave mode)
- Fast Mode: 0 to 400kHz clock frequency (slave mode)
- High Speed: 0 to 3.4MHz clock frequency (slave mode)

The SDA signal is bidirectional and is used to read and write the serial data. The SCL signal is the clock generated by the host MCU, to synchronize the SDA data in read and write mode. The maximum I²C clock frequency is 3.4MHz, data are triggered on the rising edge of SCL.

I²C Electrical Specification

Figure 29: I²C Electrical Specification

Symbol	Symbol Parameter		FS-m	node+		mode 100pF	HS-mode C _B =400pF		Unit
			Min	Max	Min	Max	Min	Max	
V _{IL}	LOW-Level Input Voltage		-0.5	0.3V _{DDC} ORE	-0.5	0.3V _{DDC} ORE	-0.5	0.3V _{DDC} ORE	V
V _{IH}	HIGH-Level Input Voltage		0.7V _{DD} CORE	V _{DDCORE} + 0.5	0.7V _{DD} CORE	V _{DDCORE} + 0.5	0.7V _{DD} CORE	V _{DDCORE} + 0.5	>
V _{hys}	Hysteresis of Schmitt Trigger Inputs	V _{DDCORE} < 2V	0.1V _{DD} CORE		0.1V _{DD} CORE		0.1V _{DD} CORE		V
V _{OL}	LOW-Level Output Voltage (open-drain or open-collector) at 3mA Sink Current	V _{DDCORE} < 2V		0.2V _{DDC} ORE		0.2V _{DDC} ORE		0.2V _{DDC} ORE	V
I _{OL}	LOW-Level Output Current	V _{OL} = 0.4V	20						mA
I _{CS}	Pull-up current of SCLH current source				3	12	3	12	mA
t _{SP}	Pulse Width of Spikes that must be suppressed by the Input Filter			50 ⁽¹⁾		10		10	ns

Symbol Parameter		Condition	FS-mode+		HS-mode C _B =100pF		HS-mode C _B =400pF		Unit
			Min	Max	Min	Max	Min	Max	
l _i	Input Current at each I/O Pin	Input Voltage between	-10	+10 (2)		10		10	μΑ
C _B	Total Capacitive Load for each Bus Line			550		100		400	pF
C _{I/O}	I/O Capacitance (SDA,SCL)			10		10		10	pF

Note(s) and/or Footnote(s):

- 1. Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns.
- 2. I/O pins of Fast-mode and Fast-mode Plus devices must not obstruct the SDA and SCL lines if VDD is switched off.

I²C Timing

Figure 30: I²C Timing

Symbol	ymbol Parameter Condition		FS-mo	ode+	HS-mode C _B =100pF		HS-mode C _B =400pF (5)		Unit
			Min	Max	Min	Max	Min	Max	
f _{SCLK}	SCL clock Frequency			1000		3400		1700	kHz
t _{BUF}	Bus Free Time; time between STOP and START Condition		500		500		500		ns
t _{HD;STA}	Hold Time; (Repeated) START Condition ⁽¹⁾		260		160		160		ns
t _{LOW}	LOW Period of SCL Clock		500		160		320		ns
t _{HIGH}	HIGH Period of SCL Clock		260		60		120		ns
t _{SU;STA}	Setup Time for a Repeated START condition		260		160		160		ns
t _{HD;DAT}	Data Hold Time (2)		0	450	0	70	0	150	ns
t _{SU;DAT}	Data Setup Time (3)		50		10		10		ns
t _R	Rise Time of SDA and SCL Signals		20+0.1C _b	120					ns

Symbol	Parameter	Condition	FS-mo	ode+	HS-m C _B =10		HS-m C _B =400		Unit
			Min	Max	Min	Max	Min	Max	
t _F	Fall time of SDA and SCL signals		20+0.1C _b	120 ⁽⁴⁾					ns
t _{rCL}	Rise time of SCLH signal	Ext. pull-up source of 3mA			10	40	20	80	ns
t _{rCL1}	Rise time of SCLH signal after repeated START condition and after an acknowledge bit	Ext. pull-up source of 3mA			10	80	20	160	ns
t _{fCL}	Output rise time of SCLH signal	Ext. pull-up source of 3mA			10	40	20	80	ns
t _{rDA}	Output rise time of SDAH signal				10	80	20	160	ns
t _{fDA}	Output rise time of SDAH signal				10	80	20	160	ns
t _{SU;STO}	Setup Time for STOP Condition		260		160		160		ns
V _{nL}	Noise margin at LOW level		0.1V _{DDp}		0.1V _{DDp}		0.1V _{DDp}		V
V _{nH}	Noise margin at HIGH level		0.2V _{DDp}		0.2V _{DDp}		0.2V _{DDp}		V

Note(s) and/or Footnote(s):

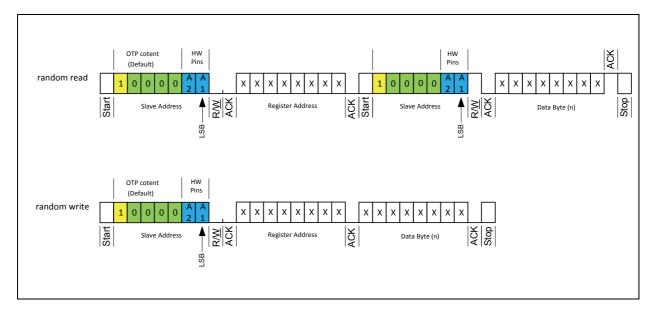
- 1. After this time the first clock is generated.
- 2. A device must internally provide a minimum hold time (120ns / max 250ns for Fast-mode Plus, 80ns / max 150ns for High-speed mode) for the SDA signal (referred to the V_{IHmin} of the SCL) to bridge the undefined region of the falling edge of SCL.
- 3. A fast-mode device can be used in standard-mode system, but the requirement $t_{SU;DAT} = 250$ ns must then e met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{Rmax} + T_{SU;DAT} = 1000 + 250 = 1250$ ns before the SCL line is released.
- 4. In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used this has to be considered for bus timing.
- 5. For capacitive bus loads between 100pF and 400pF, the timing parameters must be linearly interpolated

Register Table

The following registers / functions are accessible over the serial $\mbox{$\rm I}^2\mbox{$\rm C}$ interface.

Figure 31: Register Map I²C

Address hex	Name	Access Type	Bit	Symbol	Default	Description	
				Control OTP			
			7	Not used			
			6	Verify			
			5	Not used		Programming control register. Programming	
	Programming	R/W	4	Not used		must be enabled before burning the fuse(s). After	
x03	Control		R/W	3	Burn	0	programming is an
					2	Reserved	
			1	neserved		procedure.	
			0	Programming Enable			
		Prog	jramm	able Customer Settin	gs		
				7			
			:	Not used	n.a.	I ² C slave address slave	
	I ² C slave		5			address consist of 5 bits (MSBs) and the hardware	
x15	address	R/W	4	I ² C address<4>	internally inverted	setting of Pins A1 and A2 I ² C address <4> is the inversion defined as '1'	
			:	:	:	inversion defined as 1	
			0	I ² C address<0>	0		
	OTP Register	R/W	7	Zero Position <13>	0		
x16	Zero Position Hi	+ Program	:	:	:	Zero Position value high byte	
	111	Tiogram	0	Zero Position <6>	0		
			7	Not used	n.a.		
	OTP Register	R/W	6				
x17	Zero Position Low 6 LSBs	+ Program	5	Zero Position <5>	0	Zero Position remaining 6 lower LSB's	
	LOW 0 LJD3	riogianii	:	:	:		
			0	Zero Position <0>	0		



Address hex	Name	Access Type	Bit	Symbol	Default	Description
			Rea	dout Registers		
			7	AGC value<7>	1	Automatic Gain Control value.
xFA	Automatic Gain	R	:	:	:	0 decimal represents
	Control		0	AGC value<0>	0	high magnetic field 255 decimal represents low magnetic field
			7			
			:	Not used	n.a.	
			4			
xFB	Diagnostics	R	3	Comp High	0	Diagnostic flags
			2	Comp Low	0	
			1	COF	0	
			0	OCF	1	
			7	Magnitude<13>	0	
xFC		R	:	:	:	
			0	Magnitude<6>	0	
	Magnitude		7	Not used	n.a.	Magnitude information
	Magnitude		6	Not used	ii.a.	afer ATAN calculation
xFD		R	5	Magnitude<5>	0	
			:	:	:	
			0	Magnitude<0>	0	
			7	Angle<13>	0	
xFE		R	:	:	:	
			0	Angle<6>	0	
	Angle		7	Not used	n a	Angle Value afer ATAN calculation and zero
	Angle		6	not usea	n.a.	position adder
xFF		R	5	Angle<5>	0	
			:	:	:	
			0	Angle<0>	0	

I²C Slave address

Figure 32: Slave Address Construction

Note(s) and/or Footnote(s):

1. It's important to use a STOP condition only after a complete read or write sequence.

The slave address consists of the hardware setting on pins A1, A2. The MSB of the slave address (yellow) is internally inverted. This means that by default the resulting data is '1'. A read of the I^2C slave address register 21 will return a '0' at the MSB.

PWM Interface

The AS5048 provides a pulse width modulated output (PWM), whose duty cycle is proportional to the measured angle. The PWM frequency is internally trimmed to an accuracy of $\pm 10\%$ over full temperature range. This tolerance can be cancelled by measuring the complete duty cycle.

The PWM signal consists of different sections:

· Init:

12 clocks \rightarrow PWM = 'high'

• Error_n:

4 clocks → PWM = 'not(system_error)'

• Data:

4095 clocks \rightarrow PWM = 'angle_zero' / 'low' (in case of error)

• Exit:

8 clocks \rightarrow PWM = 'low'

In case of an error the data section is set to zero.

Figure 33: PWM Format

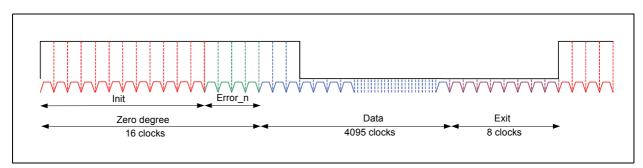


Figure 34: PWM Period and resolution

Parameter	Symbol	Value	Unit
PWM Frequency	F_PWM	1	KHz
PWM Pulse period	T_PWM	4119	bit

Application Information

Programming of the AS5048

Programming of the Zero Position: The absolute angle position can be permanent programmed over the interface. This could be useful for random placement of the magnet on the rotation axis. A readout at the mechanical zero position can be performed and written back into the IC. With permanent programming the position is non-reversible stored in the IC. This programming can be performed only once.

To simplify the calculation of the zero position it is only needed to write the value in the IC which was read out before from the angle register.

Programming Sequence with Verification: To program the zero position is needed to perform following sequence:

- 1. Write 0 into OTP zero position register to clear
- 2. Read angle information
- 3. Write previous read angle position into OTP zero position register

Now the zero position is set.

If you want to burn it to the OTP register send:

- 4. Set the Programming Enable bit in the OTP control register
- 5. Set the Burn bit to start the automatic programming procedure
- 6. Read angle information (equals to 0)
- 7. Set the Verify bit to load the OTP data again into the internal registers
- 8. Read angle information (equals to 0)

The programming can either be performed in 5V operation using the internal LDO, or in 3V operation but using a minimum supply voltage of 3.3V. In case of 3V operation, also a $10\mu F$ capacitor is required on the VDD3 pin.

Programming the I²C Slave address: For informations of programming the I²C Slave address please refer to our application note covering this topic.

Diagnostic Functions of the AS5048

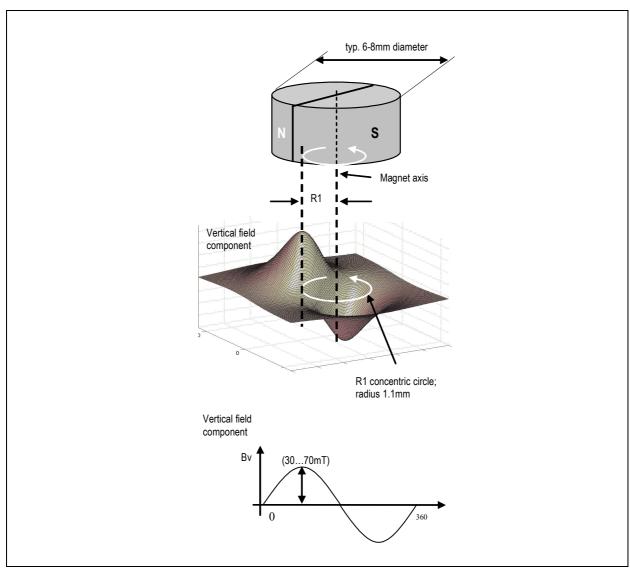
The AS5048 provides diagnostics functions of the IC and also diagnostic functions of the magnetic input field

Following diagnostic flags are available:

See Figure 22 register address x3FFD (AS5048A) or Figure 31 register address 251 dec (AS5048B)

- **OCF** (**O**ffset **C**ompensation **F**inished), logic high indicates the finished Offset Compensation Algorithm. After power up the flag remains always to logic high.
- **COF** (**C**ordic **O**ver**f**low), logic high indicates an out of range error in the CORDIC part. When this bit is set, the angle and magnitude data is invalid. The absolute output maintains the last valid angular value.
- **COMP low**, indicates a high magnetic field. It is recommended to monitor in addition the magnitude value.
- **COMP high**, indicated a weak magnetic field. It is recommended to monitor the magnitude value.

ams Datasheet: 2014-Jun-05 [v1-06] AS5048A/AS5048B – 29

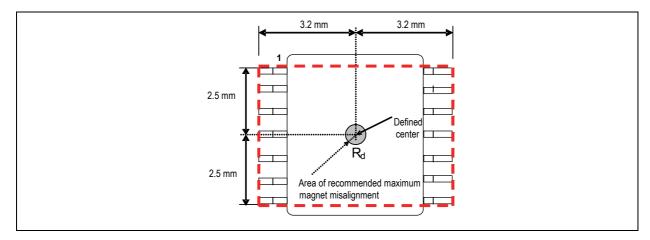


Choosing the Proper Magnet

The AS5048 works with a variety of different magnets in size and shape. A typical magnet could be 6-8 mm in diameter and ≥ 2.5 mm in height The magnetic field strength perpendicular to the die surface has to be in the range of ± 30 mT ... ± 70 mT (peak).

The magnet's field strength should be verified using a gauss-meter. The magnetic flux B_Z at a given distance, along a concentric circle with a radius of 1.1mm (R1), should be in the range of ± 30 mT... ± 70 mT.

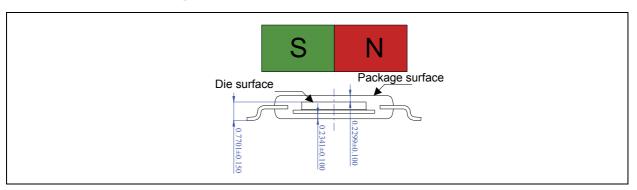
Figure 35:
Typical Magnet and Magnetic Flux Distribution



Physical Placement of the Magnet

The best linearity can be achieved by placing the center of the magnet exactly over the defined center of the chip as shown in the drawing below:

Figure 36:
Defined Chip Center and Magnet Displacement Radius


Magnet Placement

The magnet's center axis should be aligned within a displacement radius R_d of 0.25 mm (larger magnets allow more displacement e.g. 0.5 mm) from the defined center of the IC.

The magnet may be placed below or above the device. The distance should be chosen such that the magnetic field on the die surface is within the specified limits The typical distance "z" between the magnet and the package surface is 0.5mm to 2.5mm, provided the use of the recommended magnet material and dimensions (6mm x 3mm). Larger distances are possible, as long as the required magnetic field strength stays within the defined limits.

However, a magnetic field outside the specified range may still produce usable results, but the out-of-range condition will be indicated by indication flags.

Figure 37: Vertical Placement of the Magnet

Package Drawings & Markings Package type: TSSOP14

Figure 38: Package Markings for AS5048A & AS5048B

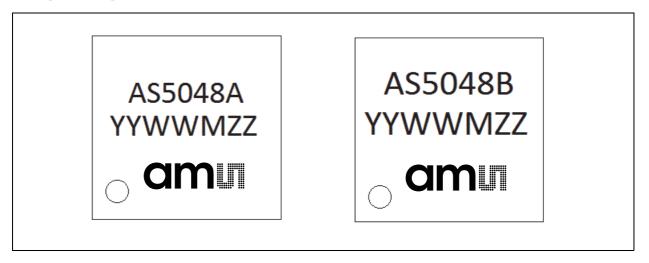
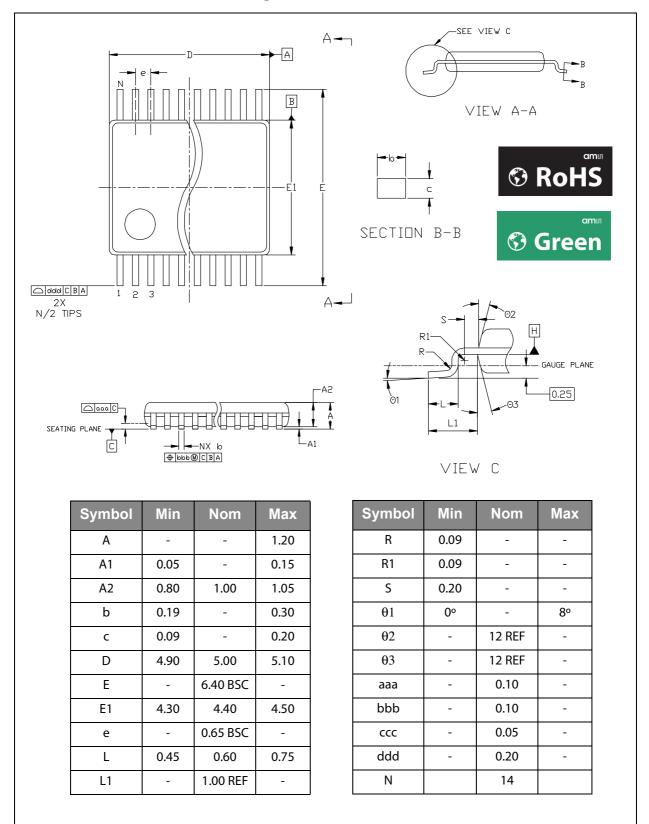



Figure 39: Package Code YYWWMZZ

YY	ww	M	ZZ
Last two digits of the year	Manufacturing week	Plant identifier	Letters for free traceability

Figure 40: 14-Lead Thin Shrink Small Outline Package TSSOP-14

Note(s) and/or Footnote(s):

- 1. Dimensioning & toleranceing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.

Ordering & Contact Information

The devices are available as standard products.

Figure 41: Ordering Information

Ordering Code	Description	Delivery Form	Package
AS5048A-HTSP	14 –Bit Programmable Magnetic Rotary Encoder with SPI-Interface	Tape & Reel	TSSOP 14
AS5048B-HTSP	14 –Bit Programmable Magnetic Rotary Encoder with I ² C-Interface	Tape & Reel	TSSOP 14

Buy our products or get free samples online at:

www.ams.com/ICdirect

Technical Support is available at:

www.ams.com/Technical-Support

For further information and requests, e-mail us at:

ams_sales@ams.com

 $For \ sales \ of fices, \ distributors \ and \ representatives, \ please \ visit:$

www.ams.com/contact

Headquarters

ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: www.ams.com

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

ams Datasheet: 2014-Jun-05 [v1-06] AS5048A/AS5048B – 35

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

ams Datasheet: 2014-Jun-05 [v1-06] AS5048A/AS5048B – 37

Revision Information

Changes from 1-05 (2014-May-20) to current revision 1-06 (2014-Jun-05)	Page ⁽¹⁾
Updated Figure 31	24

Note(s) and/or Footnote(s):

 $1. \ Page\ numbers\ for\ the\ previous\ version\ may\ differ\ from\ page\ numbers\ in\ the\ current\ revision$

Content Guide

1 General Description

- 1 Key Benefits & Features
- 2 Applications
- 2 Block Diagram
- 4 Pin Assignment
- 6 Absolute Maximum Ratings

7 Electrical Characteristics

- 7 Operating Conditions
- 7 DC/AC Characteristics for Digital Inputs and Outputs
- 8 Electrical System Specifications

9 Functional Description

10 Operation

- 10 Supply Voltage Configuration
- 10 SPI Interface
- 10 SPI Interface Signals (4-Wire Mode, Wire_mode = 1)
- 12 SPI Timing
- 13 SPI Connection to the Host μC
- 13 Single Slave Mode
- 13 3 Wire Mode (read only)
- 14 Daisy Chain, 4 Wire
- 14 SPI Communication Command Package
- 15 Read Package (Value Read from AS5048A)
- 15 Write Data Package (Value Written to AS5048A)

16 Register Description

18 SPI Interface Commands

- 18 READ Command
- 18 WRITE Command
- 19 CLEAR ERROR FLAG Command
- 20 NOP Command

21 I²C Interface

- 21 I²C Electrical Specification
- 22 I²C Timing
- 24 Register Table
- 26 I²C Slave address

27 PWM Interface

- 28 Application Information
- 28 Programming of the AS5048
- 29 Diagnostic Functions of the AS5048
- 30 Choosing the Proper Magnet
- 31 Physical Placement of the Magnet
- 31 Magnet Placement
- 32 Package Drawings & Markings
- 34 Ordering & Contact Information
- 35 RoHS Compliant & ams Green Statement
- 36 Copyrights & Disclaimer
- 37 Document Status
- 38 Revision Information