
SUMMER 2014	 1 

SUMMER 2014

Advances in Engineering Education

Haptic Paddle Enhancements and a Formal Assessment  
of Student Learning in System Dynamics

JENNA L. GORLEWICZ

Southern Illinois University

Edwardsville, Edwardsville, IL

LOUIS B. KRATCHMAN

AND

ROBERT J. WEBSTER III

Vanderbilt University

Nashville, TN

ABSTRACT

The haptic paddle is a force-feedback joystick used at several universities in teaching System 

Dynamics, a core mechanical engineering undergraduate course where students learn to model 

dynamic systems in several domains. A second goal of the haptic paddle is to increase the acces-

sibility of robotics and haptics by providing a low-cost device for middle and high school teachers 

and students, a goal which has been hindered to date by the lack of low-cost electronic solutions 

for motor control and computer interfacing. Prior assessments of the learning enabled by the paddles 

at the college level have been qualitative, consisting of anecdotal case studies illustrating student 

and educator belief that they enhance learning and increase student enthusiasm. In this paper, we 

describe haptic paddle design enhancements and provide a formal assessment of student learning 

when interacting with haptic paddles. Design enhancements seek to enable broad dissemination and 

improve the student experience by making the paddle less expensive (less than $100 for a complete 

system including electronics) and easier to use. Our formal assessment quantifies if and when learn-

ing occurs in a System Dynamics course featuring haptic paddle laboratories, via multiple choice 

quizzes presented at various time points to measure learning in the lecture, in the lab, during lab 

report writing, and at the end of the semester.
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INTRODUCTION

The haptic paddle and an associated laboratory curriculum were developed in the late 1990s at 

Stanford University to provide a hands-on platform for students to physically interact with and “feel” 

simulated dynamic systems via force feedback (Okamura, Richard, and Cutkosky 2002). Since then, haptic 

paddles have been adopted at multiple universities (see (EduHaptics 2012) for an overview) including 

Johns Hopkins (Okamura, Richard, and Cutkosky 2002), Rice (Bowen and O’Malley 2006b; Bowen and 

O’Malley 2006a), Michigan (Gillespie, Hoffman, and Freudenberg 2003), Vanderbilt (Gorlewicz and 

Webster III 2012; VU Webpage 2012), ETH Zurich (Gassert, Megzger, Leuenberger, L., Tucker, Vigaru, 

Zimmermann, and Lambercy 2013), and Utah (EduHaptics 2012). Generally agreed upon engineering 

education objectives (Felder and Silverman 1988) have spurred adoption of haptic paddles, including 

the desires to engage students with a variety of learning styles, enable students to connect theoreti-

cal principles to practical applications, and to provide students with cooperative learning experiences.

The objectives of haptic paddles are in keeping with prior work incorporating hands-on demonstra-

tions (Cox 2008; Dewoolkar, George, Hayden, and Neumann 2009; Abdulwahed and Nagy 2009), 

computer simulations (Wieman and Perkins 2005; Fraser, Pillay, Tjatindi, and Case 2007; Goeser, 

Johnson, Hamza-Lup, and Schaefer 2011), design projects (Terpenny and Goff 2006; Chen, Chase, 

Wang, Gaynor, and McInnes 2010), and laboratory experiences (Feisel and Rosa 2005), which have 

been found beneficial in the context of many different undergraduate courses. For System Dynamics, 

a core mechanical engineering undergraduate course required at most universities, haptic paddles 

provide a particularly good device upon which to build laboratory curricula (Okamura, Richard, and 

Cutkosky 2002; Grow, Verner, and Okamura 2007). They are one of the simplest possible robots that 

a student can build, having only one motor and one degree of freedom (DOF). Yet the modeling, 

mechatronics, and control work required to accomplish the haptic paddle laboratories is directly 

generalizable to more complex systems with more degrees of freedom. 

The haptic paddle has the additional benefit that it is a haptic device, through which students 

can touch and feel dynamic system simulations. Each university that has adopted haptic paddles 

has contributed to the evolution of the haptic paddle in mechanical design, educational curricula, 

and software in various ways (see Figure 1 for pictures of the various haptic paddle designs, and the 

central web repository EduHaptics (EduHaptics 2012) for more information). However, none of these 

modifications have fundamentally altered what the haptic paddle is; it remains a one DOF haptic de-

vice that students can construct and/or program and use. Most hardware changes have been aimed 

at increasing robustness, reducing costs (though even the initial work at Stanford emphasized cost-

conscious mechanical design), and using readily available materials and components. The initial cur-

riculum proposed at Stanford consisted of sequential laboratory exercises focused on constructing, 
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calibrating, modeling, and controlling the paddle, before using it to interact with simulated dynamic 

systems (Okamura, Richard, and Cutkosky 2002). While some curricular adaptations have been 

made at various universities to suit the learning objectives of their respective courses, the originally 

proposed curriculum has been used with only minor modifications at Stanford, Johns Hopkins, and 

Vanderbilt, and is the subject of the formal assessment described in this paper. Prior assessments of 

the haptic paddle as a learning tool have largely been qualitative and anecdotal in nature, illustrating 

that students respond enthusiastically to the haptic paddle and that many students appeared to labo-

ratory instructors to be developing a true understanding of core course concepts for the first time as 

they interacted with the haptic paddles (Okamura, Richard, and Cutkosky 2002). There has been one 

preliminary assessment measuring learning outcomes using the haptic paddle laboratory series com-

pared to more traditional modular labs (Bowen and O’Malley 2006b). In this study, the outcomes were 

measured via a subjective scaling rubric, with student answers being graded as 0 (not at all correct) 

to 3 (fully correct). The results of the study show significant gains in student understanding of con-

cepts associated with the course after completing the haptic paddle labs compared to disjointed labs.

There have also been a number of instances over the years where high school students and 

teachers have requested information and assistance from faculty and graduate students in building 

their own haptic paddles, having found information about them on the Internet. To address this, one 

of the main objectives in the initial work at Stanford was to enable broad dissemination at multiple 

educational levels. They sought to facilitate this adoption by making the haptic paddle mechanical 

components as low cost as possible. However, a major hurdle in the process of making haptic 

paddles accessible to the at-home and high-school settings has been the fact that the initial system 

at Stanford used an expensive D/A card, a desktop computer to host it, and a benchtop power 

supply. Thus, despite low-cost mechanical components, someone developing a haptic paddle setup 

from scratch needed to invest quite a bit of money in computer/electronics resources. They would 

Figure 1. (a) The Stanford and Johns Hopkins Haptic Paddle. (b) The University of 

Michigan Haptic Paddle. (c) The Rice University Haptic Paddle. (d) The University of Utah 

Haptic Paddle.
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also need to be sufficiently computer-savvy to be comfortable opening their computer case to install 

the card and then learning how to write a program to interface with it

To address these challenges, in this paper, we contribute enhancements to the haptic paddle 

infrastructure, as well as a formal assessment of the learning that is facilitated by haptic paddle 

laboratories during a semester of System Dynamics. More specifically, we present (1) a new friction 

drive design, which is more robust than the original capstan drive (enhancing learning by mitigat-

ing student frustration with re-stringing the paddles whenever they make them go unstable), (2) a 

new electronics implementation featuring a low-cost Arduino microcontroller and amplifier (≈$55), 

which connects to a computer using a universal serial bus (USB) interface, making it possible to 

operate the paddle from a laptop, and (3) a new Matlab/Simulink (The MathWorks Inc.) software 

framework, which is consistent with and reinforces Matlab use throughout the course. Further, we 

complement prior assessments that evaluated student perception of the valueof the haptic paddle 

laboratories and the enhancements that the haptic paddle lab series offers compared to tradi-

tional disjointed labs, with a formal assessment. The objective is to determine if and when students 

learn key course concepts: in lecture, in the lab activities themselves, or after reflecting on the 

lab activities while writing lab reports. We note that some material in this paper was presented in 

preliminary form in (Gorlewicz and Webster III 2012). Here, we present a new haptic paddle system 

and its accompanying hardware and software, a validation of the new friction drive design, a third 

year of assessment data, and a discussion of our dissemination efforts.

HAPTIC PADDLE HARDWARE AND SOFTWARE ENHANCEMENTS

The haptic paddle is similar in functionality to commercially available haptic devices (such as the 

PHANToM Omni by SensAble Technologies) in that it emulates interaction forces that occur when a 

user contacts an object, but it is simpler in design and construction since it is has just one DOF. As 

the user moves the paddle handle, the drive wheel attached to the motor rotates. The position of the 

drive wheel is sensed using a magnetic angle sensor and the Arduino (see Section 2.2). The Arduino 

is used for bidirectional communication between the motor and Simulink. In Simulink, the position 

and velocity of the paddle handle are calculated and desired forces are computed. Then, the motor 

generates these desired forces, which are felt by the user holding the paddle handle.

Mechanical Design Enhancements

The basic haptic paddle design (Figure 1) consists of an acrylic handle coupled to a single motor 

through a capstan drive. As with prior haptic paddles, ours (Figure 2) is designed to be low-cost 
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and easy to manufacture, consisting of laser-cut acrylic. All prior haptic paddle designs have used 

capstan drives, with the exception of the Michigan haptic paddle (iTouch Motor), which uses a 

direct drive device without a transmission (Gillespie, Hoffman, and Freudenberg 2003). While 

there is nothing intrinsically disadvantageous with capstan drives (indeed, they are preferred in 

many commercial haptic devices for their low friction and smoothness), several years of experience 

in the laboratory have illustrated that they can be a source of significant frustration for students and 

teaching assistants (TAs) as implemented on haptic paddles. For example, when students cause 

paddle instability (which they often do when learning about control, and occasionally at other 

times in the lab) the string will pop off of the motor drive wheel. It then requires several hands 

working in a small space to re-wrap and tension the string, while tightening screws and nuts to fix 

both ends of the string to the capstan. This process takes anywhere from 2-10 minutes, depending 

on student experience and frustration level. If done incorrectly, the string may be too loose and 

slip around the motor spool.

To address this, we have replaced the capstan drive with a friction drive. The friction drive con-

sists of a strip of neoprene rubber adhered to the bottom of the paddle handle that rolls in contact 

with an aluminum drive wheel fastened to the motor shaft, as shown in Figure 3. This new design is 

much easier to assemble. If the paddle goes unstable, the neoprene strip simply rolls out of contact 

Figure 2. A schematic of the components of our Haptic Paddle, which relies on a friction 

drive design, runs in Matlab/Simulink, and uses a low-cost Arduino microcontroller for 

communication.
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with the drive wheel. To reset the paddle, all one needs to do is move the handle back into its nor-

mal vertical position. To ensure that the amount of contact force between the drive wheel and the 

rubber strip can be optimally adjusted (note that this only needs to be done once), we included an 

adjustable bracket that enables the entire paddle handle to move up and down, as shown in Figure 2.

While this friction drive trades off some haptic fidelity in exchange for robustness, we have 

observed no practical reduction in learning benefit with this new design. Indeed, it is qualitatively 

difficult to perceive a noticeable difference between the friction drive and capstan drive. To quantita-

tively compare the friction and cable drive designs, we measured the friction and inertia of our new 

paddle compared to the Stanford haptic paddle using an experimental setup similar to that described 

in (Abbott 2005), which estimated these parameters for the capstan drive haptic paddle. To do this, 

we attached a load cell (Entran ELFM-T2E-25L) with a small acrylic square at the handle of both 

paddles. A user lightly grasped the acrylic square and moved the paddle randomly using a variety 

of velocities. Force and position values were recorded throughout paddle motion. We modeled the 

haptic paddle as a mass with Coulomb-plus-viscous friction and used a pseudoinverse technique to 

solve for the mass (m), viscous friction coefficient (b), and Coulomb friction (fc), as in (Abbott 

2005). Twenty trials were performed for each paddle design, and the results were averaged.

Figure 3. The new friction drive design of the haptic paddle consisting of a rubber strip 

at the bottom of the paddle handle which directly contacts the drive wheel on the motor. 

An inexpensive magnetoresistive angle sensor ($6, KMA199E, NXP Semiconductors), which 

measures the angle of the nearby rotating magnet on the drive wheel, provides the motor 

position.
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The resulting parameter estimates for the capstan drive paddle were m = 0.0596 kg, b = 0.0926 Ns/m, 

and fc = 0.1083 N, and for the friction drive paddle were m = 0.0466 kg, b = 0.1218 Ns/m, and fc = 0.1146 N. 

We observe that the equivalent mass, viscous friction, and Coulomb friction in both paddles are similar. 

While the viscous friction coefficient is higher in the friction drive paddle compared with the capstan drive 

paddle, both are low. Further, in (Abbott 2005), the viscous friction coefficient in the cable drive paddle 

was found to be between b = 0.15 − 0.23 Ns/m, showing that this parameter can vary depending upon the 

construction of the paddle and the components used. We also note that our equivalent mass was lower 

in the friction drive paddle compared with the capstan drive paddle. Our calculated effective masses at 

the paddle handle, including the 0.0075 kg load cell and acrylic square, were m = 0.053 kg for the friction 

drive paddle and m = 0.052 kg for the capstan drive paddle. These calculated values were comparable 

to the estimated values of mass from our model, but there were some small discrepancies between the 

two values for each paddle. These discrepancies were likely due to slight variations in how hard the user’s 

finger pressed onto the force sensor when holding the paddle in each trial. We mitigated this variation 

as much as possible by reminding the user not to squeeze the force sensor before each trial; however, 

the compliance of the fingertip pad likely contributed to small variations in the grasp force. Compared to 

commercial haptic devices such as the Phantom Omni, which has an apparent mass at the tip of 0.045 

kg and backdrive friction of 0.26 N (SensAble Technologies), both haptic paddle designs perform well.

A minor additional mechanical change to the haptic paddle design was the incorporation of the 

larger aluminum drive wheel, shown in Figure 3, onto the motor shaft. This adds some inertia and 

changes the gear ratio slightly of our new paddle compared to the original haptic paddle. However, 

it enables the motor spin down test (a Lab 1 exercise, see (Okamura, Richard, and Cutkosky 2002)) 

to be performed with no disassembly of the paddle, as was required in prior capstan drive versions. 

Now, all that must be done to perform the motor spin down test is to rotate the handle until the 

neoprene strip is out of contact with the aluminum drive wheel.

Low-Cost Electronics and Computer Interfacing

Toward lowering the overall cost and thus the bar for entry to new users of the haptic paddle, 

and in keeping with the general goals of the original Stanford project which sought a widely dis-

seminable device, we have developed a new low-cost and easy-to-use electronics solution based on 

the Arduino microcontroller. While the original haptic paddle could be built for $30 in mechanical 

components, it was assumed that a D/A (Digital to Analog) solution was already available to the 

person implementing the paddle (Okamura, Richard, and Cutkosky 2002). Initial instantiations of the 

design at Stanford and Johns Hopkins used Measurement Computing PCI cards which, at the time, 

retailed for between $1000 and $2000 and required a desktop computer. The recent introduction of 

the Arduino microcontroller has provided a low-cost microcontroller capable of D/A and (with the 
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associated motor amplifier) motor control, that has catalyzed a large hobbyist community and has 

been introduced into the classroom at many universities over the past few years. For us, an ancillary 

benefit of Arduino use is that it reinforces the experience that students obtain in our undergraduate 

Mechatronics class, in which Arduino programming and interfacing are central topics. The Arduino 

is a USB-connected device (meaning the haptic paddle can now be run from a laptop) and is in-

expensive, with the Arduino UNO retailing for $30 and the Motor Driver Shield (amplifier) retailing 

for $25 from SparkFun Electronics, as of the time of this writing. The microcontrollers are easy to 

program, with extensive online documentation and examples. Using the Arduino language, which 

is simply a set of C/C++ functions, and the Arduino programming environment (Arduino 2012), we 

developed code to read the haptic paddle’s angle sensor and control the motor using pulse width 

modulation (PWM).

We also upgraded the hall effect sensors used in the original design to a new $6 magnetic angle 

sensor (KMA199E, NXP Semiconductors) as shown in Figure 3. These analog sensors are much 

more reliable and robust to misalignment and exact distance to the magnet, and provide a larger 

voltage output range compared with the hall effect sensors used in the initial Stanford design. They 

are also linear with respect to angle, obviating the need for a 3rd order model fit for calibration. 

We note that this calibration process, while perhaps useful educationally, was a significant source 

of frustration for students and TAs because the need for recalibration was frequent, as the sensors 

did not work well for imperfectly assembled paddles (i.e. those with distance variation between 

the magnet and sensor over the paddle sweep). To retain the educational aspects of calibration, 

we now include a calibration verification experiment in the lab, where students verify the linear 

relationship between handle angle and sensor output.

These electronics improvements have reduced the cost of the complete haptic paddle system to 

just under $90, ($55 D/A and motor control electronics + $6 angle sensor + $5 surplus motor + $20 

Acrylic raw material). This lower cost may make it easier for universities, K-12 students and teach-

ers, and hobbyists to adopt and use haptic paddles. This cost assumes that the user has a laptop or 

desktop computer and a power supply. Many users will already have access to a power supply, but 

if not, low-cost options such as a 12V Regulated Power Adapter, rated for 5A, can be easily found 

on several online retailers (e.g. Replacement AC Adapter, 12V, 5A Power Supply from Stiger) for less 

than $9. To connect this to the haptic paddle, an appropriate connector (e.g. CP-024B-ND, DigiKey 

Corporation, $3) will be needed, or one could simply cut off the plug and use the individual wires.

Matlab/Simulink Control Software

We have also modified the software interface that controls the haptic paddles, moving from 

C++ to Matlab/Simulink (The MathWorks, Inc.). Simulink’s Real Time Windows Target and the 3D 



SUMMER 2014	 9 

ADVANCES IN ENGINEERING EDUCATION

Haptic Paddle Enhancements and a Formal Assessment of Student Learning 

in System Dynamics

animation packages enable us to control the haptic paddle in real time and to create realistic visu-

alizations and convenient user-interfaces for students. All of the code to do this is freely available 

at (VU Webpage 2012).

The move to Matlab/Simulink was made for two reasons. First, we use Matlab in the lecture 

portion of the class for model evaluation and dynamic simulation, and it is preferable to keep 

a consistent software language throughout the class. Note that many Mechanical Engineering 

students have only superficial knowledge of programming and little comfort with it, despite having 

a required programming course as freshmen or sophomores. Thus, often, one must re-teach many 

basic programming concepts in System Dynamics, and switching languages can cause confusion. 

Second, the original paddles were programmed using C++, and students were provided only with 

executables, which limited their ability to develop a deep understanding of what is going on inside 

the haptic paddle system “black box”. Simulink’s graphical interface enables students to build block 

diagrams, connecting what they have learned in class directly to hardware, and makes it easier for 

students to understand how the computer program works. Since students are now able to program 

the paddle themselves, they also have much more accountability during lab activities. Rather than 

blaming the TAs, the computer in the lab, the course instructor, or the university for any bugs they 

encounter, they are automatically inclined to begin debugging themselves, rather than relying on 

the TA to “fix” the system for them. We have qualitatively observed students to be more engaged 

and more enthusiastic in the lab with the interactive software environment provided by Simulink, 

than when simply double clicking in an executable.

Updates to the Original Stanford Laboratory Curriculum

The mechanical, electronic, and software changes described above have reduced the complexity 

and cost of the entire system while also providing students with a flexible software interface through 

which they can quickly develop real-time models and interface them with their haptic paddle. While 

these changes have required some curricular changes (notably the simpler design does not require 

most of one lab for paddle construction, and the improved sensor design has saved about half of 

another lab by eliminating sensor calibration), the learning objectives of the lab exercises remain 

comparable to the original Stanford and Johns Hopkins labs. These time savings have enabled us to 

devote more lab time to teaching the students Simulink and how to interface simulation and hardware.

Similar to the original Stanford curriculum, each of the five sequential lab assignments focuses 

on a different aspect of the haptic paddle, which relates to concepts covered in lecture. The follow-

ing are descriptions of the current lab assignments (also posted at (VU Webpage 2012)), including 

minor modifications enabled by the hardware/electronics/software changes described above. The 

summaries and main educational goals of each lab are listed below, such that readers can easily 
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refer back to them when interpreting the results of the formal assessment described in the Assess-

ment Sections.

•	 Lab 1: In the first lab, the main educational objectives focus on first order systems and the 

components of dynamic systems. In lab, students are introduced to Simulink by creating 

simple models of virtual springs and dampers and then use the paddle to feel these virtual 

objects while changing their properties. Then, they conduct a motor spin down test as an 

example of a first order system and compare their experimental results with predicted results 

they obtain from their Simulink simulation of their motor. Students then include Coulomb fric-

tion in their simulation and compare the differences between it and their simulation with only 

viscous damping. Finally, they use their simulation results to estimate damping in their motor 

and compare it with the best fit damping constant they obtain from their analytical solution.

•	 Lab 2: In the second lab, the primary educational objectives include a more in-depth exploration 

of friction, damping, and other external factors that effect system performance. In lab, students 

experimentally measure the torque constant and Coulomb friction in the motor and analyze 

the paddle handle by measuring its moment of inertia through a bifilar pendulum experiment.

•	 Lab 3: In the third lab, the main educational objectives focus on the behavior of second order 

systems. In lab, students first perform a calibration exercise with the magnetic sensor. Then, they 

use Simulink to make their haptic paddle behave as a second order underdamped system in order 

to determine the equivalent mass, stiffness, and damping of the system. Finally, students build a 

pure simulation of a second order system and compare their predicted and experimental results.

•	 Lab 4: In the fourth lab, the main educational goals include stability and feedback control. 

In lab, students investigate PID (proportional-integral-derivative) control by developing a 

Simulink model to command step and sinusoidal inputs (as shown in Figure 4 (Left)), alter-

ing PID gains, and observing the paddle’s response. Then, students add weights to the top 

of their paddle handle to make it an unstable system (inverted pendulum) and use feedback 

control to stabilize the paddle.

•	 Lab 5: In the fifth lab, the primary educational objectives focus on forced responses and 

vibrations. In lab, students interact with a multiple DOF mass-spring-damper system and 

explore its modes of vibration using the paddle and a real-time 3D visualization of the system, 

shown in Figure 4 (Right).

We note that majority of the content associated with the first two labs is material that students 

have been exposed to in prior engineering courses, while the content associated with the remain-

ing three labs is likely new material for students. Thus, in principle, the first two labs may contain 

concepts that students can grasp more easily due to prior exposure as opposed to the latter three 

labs where students are trying to grasp concepts for the first time.
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A FORMAL ASSESSMENT OF STUDENT LEARNING: METHODS

This section addresses the formal assessment of the learning that takes place in haptic paddle labo-

ratories in the context of a System Dynamics course. This assessment seeks to determine if students 

are learning key educational objectives for each lab and to determine when that learning took place. 

In conducting this assessment, we had the distinct advantage of having a large class (approximately 

70 students, varying slightly from year to year) that was subdivided into four lab sections. Each lab 

section met for three hours on a different day of the week, five times throughout the semester. Within 

each lab section, teams of 2-3 students work together, as shown in Figure 5. These teams are self-

selected by the students, and they remain in roughly the same groups for the duration of the semester.

To assess student learning, we constructed a 25-question multiple choice quiz (5 questions/lab ×  

5 labs, see (VU Webpage 2012)) covering the core concepts of the lecture and the lab exercises. 

The goal in our multiple choice quiz was to test for conceptual understanding. Because there does 

not exist a current concept inventory for system dynamics and the inventories available on online 

repositories (e.g. CIHub.org) for dynamics do not cover the scope of material for this course, we 

sought to generate our own System Dynamics Concept Inventory. To do this, we held iterative 

brainstorming sessions between the instructor and two teaching assistants who had been heavily 

involved in the course in the past. Questions were generated based on covering the core concepts of 

the course and then answers were generated to include common misconceptions or wrong answers 

that students would likely choose if they had only partial or incorrect understanding of the concept. 

The concept inventory is available online at (VU Webpage 2012). Each question had 4 possible 

answers, with one being correct. In a few questions, we asked students to “Choose all of the 

answers that apply,” instead of selecting just one. This 25-question assessment was administered 

Figure 4. (Left) The Simulink model students build to investigate feedback control in 

Lab 4. (Right) The 3D visualization of a mass-spring-damper system students interact with 

using the haptic paddle in Lab 5.
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during the first week of the semester to all students in order to assess their initial understanding 

of the course material and to provide a baseline measurement for statistical analyses and again at 

the end of the semester as a final evaluation. This 25-question assessment was then broken down 

into 5 quizzes, each containing 5 questions. Each quiz corresponded to key concepts from one lab.

To explore when student learning was occurring, we randomized the presentation of the 

5-question lab quiz among the four student sections at (1) the beginning of the lab session, 

(2) after a pre-lab lecture, (3) after completing the lab, or (4) after completing the lab report 

(typically 1-2 weeks after completing the lab), as shown in Table 1. The first time point enabled 

us to assess the value of the in-class lecture alone. The second time point provided insight on 

student learning after both an in-class lecture and a concise, introductory pre-lab lecture on the 

lab objectives. The third time point sheds light on the cumulative benefits of the lectures and 

lab activities in enhancing student learning, and the fourth time point enabled us to explore the 

overall success of all learning experiences including lectures, lab, and a formal lab report. Though 

the timing of the lab quiz differed between student sections, the same lab quiz was administered 

to each. Using this approach, each student section took one quiz for each lab, varying only by 

the time point at which they took it. The time at which the lab quizzes were administered to each 

section was systematically rotated (see Table 1) to remove any potential bias in data collection.

Figure 5. Small teams of 2-3 students interacting with the haptic paddle during a lab 

activity.
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Students were given a 10% extra credit bonus on each of their lab report grades for completing 

the respective lab quiz. These points were given based on completion of the quiz, not based on 

correctness of student answers. Students were aware of this grading policy, and thus, it is possible 

that they may not have always tried their hardest in answering the questions correctly. We note, 

however, that lab TA’s stressed the importance of the quizzes to the students and provided ample 

time in lab for students to complete them. For assessment purposes, we recorded 1 point for 

every correct answer and 0 points for every incorrect answer. Means and standard deviations were 

computed for each of the students’ quizzes.

Below, we present three years of data collected from the assessments, with N1 = 63 students, 

N2 = 71 students, and N3 = 74 students, where Nx represents the total number of students in the 

class for each of the three years. We note that appropriate IRB approval was obtained for this 

study. In year 1 (Y1), we used the original Stanford version of the haptic paddle (subsequently used 

at Johns Hopkins University) and its C-executables, in year 2 (Y2), we used the inverted paddle 

design with a cable drive (similar to the Rice University design) and Matlab and Simulink software, 

and in year 3 (Y3) we used the friction drive paddle and Matlab and Simulink.

We note that the same instructor taught the course over the period of this study. There were no 

fundamental changes to the course structure or basic course content over the 3 years of this study, 

with only normal updates to individual lectures and minor modifications to homework problems 

being made. The one somewhat significant change to the course made during the time period of 

the study was that the final exam was replaced with a final take-home project in Year 2, but we do 

not expect this to have influenced the laboratories since all labs were completed prior to the final 

project assignment. It is possible that this take-home project may have influenced the end of the 

semester results, but another study would be required to explore this. We also note that the same 

2 TAs taught all of the sections of the lab within a given year of the course. While there were dif-

ferent TAs in different course years, each TA was prepared for the laboratory exercises in the same 

manner, through discussions with the instructor. The presence of different TAs between years may 

Placement Lab 1 Lab 2 Lab 3 Lab 4 Lab 5

Beginning S1 S4 S3 S2 S1

After Pre-Lecture S2 S1 S4 S3 S2

After Lab S3 S2 S1 S4 S3

After Lab Report S4 S3 S2 S1 S4

Table 1. Quiz placement for each lab for each student section. S1-S4 represents each of 

the four student sections.
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be a positive feature of our study, since it is representative of how the lab would be conducted at a 

different university. We explore the effects of the different TA between years in Section 5.7.

Research Questions

The research questions we sought to answer analyzing quiz data are as follows:

1.	Overall, did the students learn the core course concepts at some time point during the 

semester? Statistically, we were interested in determining if there was a significant increase in 

mean quiz score from the beginning to the end of the semester.

2.	When did the students learn the material? Statistically, we were interested in determining if there 

were any significant differences between mean quiz scores from the beginning of the semester 

to any of the time points at which the quizzes were administered. While our study architecture 

does not enable us to pinpoint the enhancements from the lab activities themselves, we were 

specifically interested in exploring the timepoint from the beginning of the semester to after 

completion of the lab activities, since this case encompasses the lab exercises presented in 

this work.

For each year of data collection, we conducted assessments at the beginning of the semester 

(pre-test), after the in-class lecture, after a pre-lab lecture, after the lab activity, after the lab report, 

and at the end of the semester (post-test). The one exception is in Year 1, where the final post-test 

data was not collected. As such, only Year 2 and Year 3 data are used in the course benefit analyses 

(Research Question 1), but all three years of data are used in the individual learning opportunities 

analyses (Research Question 2).

In order to address the first question, paired t-tests were performed to compare the mean quiz 

score on the pre-test with the mean quiz score of the post-test. To address the second research 

question and assess when student learning was occurring, we performed paired t-tests comparing 

the mean quiz score of the pre-test to the mean quiz score of the appropriate student section at 

various time points throughout the semester. Note that all analyses consist of pairwise comparisons, 

in order to not compare across student sections and implicitly assume that each student section is 

equivalent at every time point throughout the lab. This was done to ensure valid interpretations of 

our results. For further insight into the magnitude of the difference in mean quiz scores in each 

analyses, we also computed the effect size between the two means of interest using Cohen’s d with 

a pooled standard deviation. A positive value of d suggests an increase in student performance 

on the quiz at the specified time compared to the pre-test, and a negative value of d indicates a 

decrease in student performance on the quiz at the specified time compared to the pre-test.

Note that in all discussions, figures, and tables presented, significance at the 95% confidence 

level (α = 0.05) was determined from the paired t-test analyses, and the interpretations made 
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on effect size were based upon the Cohen’s d computation. We note that these two statistical 

analyses are complementary to one another, with the t-tests providing insight on whether or not 

quiz means were significantly different from one another, and the effect sizes providing insight 

on the magnitude of this difference. In our discussions of effect size, we follow the standard 

interpretation that d = 0.2 is a small effect, d = 0.5 is a medium effect, and d = 0.8 is a large effect, 

where the value of d indicates the difference between two means as a fraction of the pooled standard 

deviation. All statistical analyses were performed in R 2.11.1, and the results are presented in the 

Assessments Sections.

Verification of Normality and Comparable Student Sections

Before performing the above statistical analyses, we sought to verify three things: (1) Normality of 

our data, (2) No significant difference between student sections’ initial cumulative pre-test scores 

for each year, and (3) No significant difference between student sections’ initial pre-test scores for 

each lab, for each year. We assessed the normality of each student section’s data for each year 

by creating quantile-quantile plots that included both pre-test scores and lab quiz scores for each 

student section. All 12 (4 student sections × 3 years) plots suggest a linear trend, and thus we can 

infer that our data is approximately normally distributed and that parametric statistical tests, such 

as the t-test, are applicable in our subsequent analyses. Second, we ensured that student sections 

within each year were comparable in their initial cumulative understanding of the course material 

by comparing the mean cumulative pre-test score (all 25 questions) of each student section with 

the other 3 student sections using a two-sample t-test with unequal variances. Finally, we ensured 

that student sections within each year were comparable in their initial understanding of the course 

material for each lab by separating the 25-question pre-test up into 5 parts, corresponding with the 

5 lab quizzes, and comparing the mean quiz scores on each part between each student section using 

a two-sample t-test with unequal variances. The null hypothesis for all tests was that no difference 

in mean pre-test score existed between any two sections.

From the Y1 data, we observed a significant difference between student section 1 and student 

section 2 (p-value = 0.04) in their cumulative pre-test score, but found no significant differences 

at the 95% confidence level (α = 0.05) between student sections on individual parts of the pre-

test. For this reason, we only omit the cumulative pre-test scores of student sections 1 and 2 in 

appropriate subsequent analyses. From the Y2 data, we observed no significant differences at 

the 95% confidence level (α = 0.05) between any student sections’cumulative pre-test score, 

but found a significant difference between section 1 and section 4 on the Lab 5 portion of the 

pre-test (p-value = 0.04), with section 1 having a significantly higher average on this portion of 

the material. Because of this, student section 1’s data was omitted in the Lab 5 analyses for Y2. 
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Only section 1’s data was omitted because there were no significant differences between any 

combination of sections 2, 3, and 4’s scores on the Lab 5 portion of the pre-test. From the Y3 

data, we observed no significant differences at the 95% confidence level (α = 0.05) between 

any student sections’cumulative pretest score, but found a significant difference between sec-

tion 1 and section 4 on the Lab 2 portion of the pre-test (p-value = 0.02), with section 1 having 

a significantly higher average on this portion of the material. For this reason, we omit student 

section 1’s data in the Lab 2 analyses for Y3. Again, only section 1’s data was omitted because 

there were no significant differences between any combination of sections 2, 3, and 4’s scores 

on the Lab 2 portion of the pre-test

FORMAL ASSESSMENT OF COURSE: RESULTS AND DISCUSSION

We first sought to answer whether or not the students learned and retained the course con-

cepts after completing the entire course. This enabled us to generally assess if the combination 

of learning opportunities we are providing (lectures, homework assignments, labs, lab reports) 

is beneficial for students. To address this question, we performed a paired t-test comparing all 

students’ cumulative mean score on the pre-test with their cumulative mean score on the post-

test. Because we found a significant difference in cumulative scores from this comparison, we 

then separated the pre-test and the post-test into 5 parts (corresponding with the lab quizzes), 

and performed paired t-tests comparing all students’ mean quiz score on one part of the pre-

test with their mean quiz score on that same part of the post-test. This latter analysis allowed 

us to observe the cumulative learning of portions of the course material, in order to pinpoint 

which areas appear more difficult for students to grasp and may benefit from more emphasis 

in the future. In both analyses, we also computed the effect size, d, of the difference in means. 

The results of this study are presented in Figures 6 and 7 and can be found in tabular form in 

(VU Webpage 2012). Note that post-test data was only available for Y2 and Y3, and thus no 

data is presented from Y1.

Discussion of Educational Benefit from Course

The results presented from the first study suggest that students learned and retained majority 

of the core course concepts throughout the semester. From Figure 6, we observe that students 

achieved a significantly higher cumulative score on the post-test compared to the pre-test in 

both years. Large effect sizes (d > 0.8) were also observed. This suggests that the learning 

opportunities provided to the students throughout the semester were successful in enhancing 
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students’ overall understanding of the course material. After looking at the pre-test and post-

test scores separated by lab content (Figure 7), we observe that students did significantly better 

on the quizzes focusing on concepts from Labs 2, 3, 4, and 5 in at least one of the two years 

presented. Moderate to large effect sizes (d > 0.5) were also observed in these same labs. This 

suggests that students learned and retained these concepts throughout the duration of the 

course. Though quiz score increases are observed for Lab 1 in both years and Lab 2 in Y2, there 

were no significant differences between the pre-test and post-test scores in these cases, and 

the observed effect sizes were small (d < 0.5). This suggests that the material associated with 

these labs were particularly challenging for students to grasp, and could be sources of improve-

ment in future labs. For further insight into our findings, we look to the next analysis focusing 

on when student learning was occurring.

Figure 6. The cumulative mean (out of 25) of all students’ pre-test score compared with 

their post- test score for years 2 and 3. Significant differences in quiz scores from the paired 

t-test are denoted with a ** at a = 0.05. The effect size, d, between the two means is shown 

above the bars, and the difference between means is represented by the black diamond data 

points.



18	 SUMMER 2014

ADVANCES IN ENGINEERING EDUCATION

Haptic Paddle Enhancements and a Formal Assessment of Student Learning 

in System Dynamics

FORMAL ASSESSMENT OF LEARNING OPPORTUNITIES: RESULTS AND DISCUSSION

The second question we addressed provides a more in-depth analysis of when student learning 

was occurring throughout the semester and explores the cumulative learning enhancements for each 

of the course components. Namely, we explore the effects of the in-class lecture, the in-class and 

pre-lab lectures, the lectures and the lab activities, and the lectures, lab exercises, and lab reports.

Educational Benefit of Lectures

We begin with the benefits of the in-class lecture. To assess the value of the in-class lecture, 

we conducted a paired t-test with unequal variances to compare the mean quiz score from the 

appropriate part of the pre-test to the mean quiz score from the student section who took the quiz 

Figure 7. The means (out of 5) of all students’ pre-test score compared with their post-

test score for years 2 and 3. Significant differences in quiz scores from the paired t-test are 

denoted with a** at a = 0.05. The effect size, d, between the two means is shown above the 

bars, and the difference between means is represented by the black diamond data points.
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at the very beginning of the lab. We also calculated the effect size, d, between the difference in 

means from pre-test to the very beginning of lab. From Table 1, the pertinent data used in this 

analysis was student section 1’s scores for Lab 1, student section 4’s score for Lab 2, and so on. The 

results, which will be discussed in detail in Section 5.2, are shown in Figure 8.

Before students performed a lab exercise, they were given a short pre-lab lecture, which pro-

vided an introduction to the lab exercises and the main concepts associated with it. While our study 

design does not enable us to assess the value of this pre-lab lecture independently, we assessed the 

value of the in-class lecture and the pre-lab lecture combined by comparing the mean quiz score 

Figure 8. The means of the appropriate student section’s quiz score on the pre-test 

compared with the quiz score taken at the beginning of lab for year 1 (Y1), year 2 (Y2), and 

year 3 (Y3). Significant differences in quiz scores from the paired t-test are denoted with a 

** at a = 0.05. The effect size, d, between the two means is shown above the bars, and the 

difference between means is represented by the black diamond data points.
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on the appropriate part of the pre-test with the mean quiz score from the student section who took 

the quiz after the pre-lab lecture, but before the lab activity. We did this using a paired t-test with 

unequal variances and by computing the effect size between the two appropriate means. From 

Table 1, the pertinent data used in this analysis was student section 2’s scores for Lab 1, student 

section 1’s score for Lab 2, and so on. The results are shown in Figure 9 and are discussed below in 

Section 5.2 with results from the in-class lecture analysis.

Discussion of Educational Benefit from Lectures

From Figure 8, which shows the value of the in-class lecture alone, we observe that students 

scored significantly higher on quizzes associated with content from Labs 3 and 4 even before 

participating in the lab experience. Strong effect sizes (d > 0.8) were also observed in these 

two labs. This suggests that the in-class lecture is particularly beneficial for the concepts as-

sociated with Labs 3 and 4. We also note that the Y1 students had a significant decrease in quiz 

score (and a moderate effect size (d > 0.5)) from pre-test to the beginning of lab for content 

associated with Lab 2. This suggests that students may have become confused by the in-class 

lecture on this material. In Y2 and Y3, however, we observe increases in quiz scores for this 

material, though they are not significant and the effects are small. Taken together, these results 

suggest that the lecture itself, while beneficial, was simply not enough in enhancing student 

understanding of majority of the material and reiterate the need for additional learning oppor-

tunities outside of the lecture.

From Figure 9, we observe that students appeared to listen and benefit from the pre-lab lectures, 

as reflected in the significantly higher quiz scores after hearing the pre-lab lecture in all of the labs 

except Lab 1, in at least one of the three years of data collected. Moderate to large effect sizes (d > 

0.5) were also observed in these same labs. Though we cannot directly decouple the inclass lec-

ture from the pre-lab lecture in this analysis, we speculate that the pre-lab lecture had a significant 

benefit on its own when comparing the results from the in-class lecture individually (Figure 8) and 

the results including both the in-class and pre-lab lectures (Figure 9). From these two figures, we 

see that students performed significantly better on more of the quizzes after the pre-lab lecture than 

after the in-class lecture. We suspect that the discrepancies in quiz performance between years is 

due in part to different TAs providing the lectures, in addition to external factors such as student 

population, student interest in a given lab activity, student listening and recall skills, among others. 

We note, however, that we explored the effects of different TAs in our linear regression models and 

did not find this to be a confounding factor (see Section 5.7). Overall, these results suggest that a 

pre-lab introduction may also be a useful component to the lab experience and may offer concise, 

repetition of main concepts.
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Educational Benefit from Lectures and Lab

We were particularly interested in this timepoint immediately after the lab activity, as it encom-

passed the haptic paddle lab exercises. While our study design does not enable us to assess the lab 

activities themselves, this time point does enable us to explore the cumulative learning enhance-

ments from the lectures and the lab activities. To do this, we performed a paired t-test comparing 

the mean quiz score obtained after completing the lab with the mean quiz score obtained on the 

corresponding section of the pre-test for each lab. We also computed the effect size, d, for the 

difference in means from pre-test to after lab. For both analyses, we compared student section 3’s 

scores from pre-test to after lab for Lab 1, student section 2’s scores from pre-test to after lab for 

Lab 2, and so on, as shown in Table 1. The results are shown in Figure 10.

Figure 9. The means of the appropriate student section’s quiz score on the pre-test 

compared with the quiz score taken after the pre-lab lecture for year 1 (Y1), year 2 (Y2), 

year 3 (Y3). Significant differences in quiz scores from the paired t-test are denoted with a 

** at a = 0.05. The effect size, d, between the two means is shown above the bars, and the 

difference between means is represented by the black diamond data points.
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Discussion of Educational Benefit from Lectures and Lab

The results from this second study shed light on the cumulative enhancements of the in-class 

lectures, pre-lab lectures, and lab activities. In comparing the pre-test scores with the quiz scores 

after completing the lab activities, we observe that students achieved significantly higher scores, for 

material in all of the labs, in at least one of the three years of data collected (see Figure 10). Large 

effect sizes (d > 0.8) were also observed for the content of each lab in at least one of the three years 

of data collected. Looking at each year individually, we observe that students achieved significantly 

higher quiz scores on material associated with 4 of the 5 labs for Y1 and Y3 and 3 of the 5 labs for Y2. 

A similar trend was observed in looking at effect sizes, with moderate to large effects (d > 0.5) be-

ing observed for content associated with 4 of the 5 labs for Y1 and Y3 and 3 of the 5 labs for Y2. For 

further insight into these results, we look at the content associated with each of the labs separately.

Figure 10. The means of the appropriate student section’s quiz score (out of 5) on the pre-

test compared with the quiz score taken after completing the lab for year 1 (Y1), year 2 (Y2), 

and year 3 (Y3). Significant differences in quiz scores from the paired t-test are denoted 

with a ** at a = 0.05. The effect size, d, between the two means is shown above the bars, and 

the difference between means is represented by the black diamond data points.
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We begin with the material associated with Lab 1, which appears to be the most challenging for 

students to understand, as it was the only lab that did not have a significant increase in quiz score 

immediately after completing the lab exercise in Y1 or Y3. A significant increase was observed 

in Y2, however no significant increase was observed when comparing the pre-test scores to the 

post-test scores for Lab 1 in Y2 (see Figure 7). A similar trend was observed after the in-class 

lecture and the pre-lab lecture timepoints. Because we observe no change in observations after 

the Lab 1 timepoint, these results suggest that Lab 1 would benefit from further improvements to 

enhance student understanding and retention of the material. Because this was the students first 

lab experience, it is also possible that no measureable enhancements were observed due to external 

factors such as students becoming acclimated to the lab setup and becoming familiar with the 

course, instructor, and the TA.

For content associated with Lab 2, we observe that there was a large significant increase from 

pre-test to after lab for Y1 and Y3, but there was not a significant increase in quiz score from 

pre-test to after lab for Y2 (see Figure 10). Significance in Lab 2 in only some of the years was 

also observed after the in-class lecture timepoint and the pre-lab timepoint, though we note that 

the years were different between the two and between this after lab timepoint. Some changes 

were made between the three years in the Lab 2 curriculum which may have contributed to this 

discrepancy, though the changes were primarily hardware and software rather than lab content. We 

note, however, that an unpaired, two-sided t-test at the 95% confidence level comparing the mean 

pre-test scores for Lab 2 between all three years revealed that the Y2 Lab 2 pre-test score was 

significantly higher than the Y1 Lab 2 pre-test score (p-value = 0.02) and significantly higher than 

the Y3 Lab 2 pre-test score (p-value = 0.05). This suggests that the students from Y2 had a better 

understanding of the Lab 2 material at the beginning of the course compared to the students in 

Y1 and Y3. A similar trend was observed in the assessment of the educational benefit from pre-

test to post-test for the content associated with Lab 2 (see Figure 7), as the pre-test score for Y2 

was significantly higher than the pre-test score for Y3 (p-value = 0.01, from an unpaired, two-sided  

t-test at the 95% confidence level). Thus, part of the reason we may not observe a significant increase 

in Y2 Lab 2 after the in-class lecture, pre-lab lecture, and lab timepoints, may be due to the fact 

that students already knew a large portion of the material initially. These results, however, suggest 

that Lab 2 could also be a focus for future improvements to promote further learning enhancements 

supplementing the in-class and pre-lab lectures.

The results for content associated with Labs 3, 4, and 5 show significant cumulative learning 

enhancements from pre-test to after lab. For the Lab 3 content, we observe significant increases 

in quiz scores and large effect sizes (d > 0.8) from pre-test to after lab (see Figure 10) in all  
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3 years and from pre-test to post-test (see Figure 7). These positive results are also observed at 

earlier timepoints, both after the in-class lecture and after the pre-lab lecture, though we note that 

the effect sizes are larger after the lab timepoint. For the Lab 4 content, we observe a significant 

increase in quiz score and a large effect size from pre-test to post-test in Y2 and Y3 (see Figure 7) 

and from pre-test to after lab in Y1 and Y3. These findings are consistent with the observations 

made after the in-class lecture and pre-lab lecture timepoints. The one exception is the Lab 4 data 

from Y2, which does not show a significant increase in quiz score from pre-test to after lab, and has 

a small to moderate effect size (d > 0.2). This result may be due in part to the fact that the sample 

size for this particular lab was relatively small due to several students switching lab sessions or not 

completing the quiz. The significant increase in Lab 4 in Y2 from pre-test to post-test, however, 

suggests that majority of the students learned the Lab 4 material, perhaps benefiting especially 

from the lab report and lecture discussions following the lab. For the content associated with Lab 

5, we observe a significant increase in quiz score and moderate to large effect sizes (d > 0.5) from 

pre-test to after lab in all three years and from pre-test to post-test. Comparing these findings with 

the results from previous timepoints, we observe no significant increases in student learning after 

the in-class lecture timepoint, and only 2 of the 3 years had significant increases in student learning 

after the pre-lab lecture timepoint. While we cannot decouple the value of the Lab 5 activity itself, 

this additional enhancement after the lab activity is encouraging.

Educational Benefit of Lectures, Labs, and Lab Reports

Finally, to assess the value of all learning components (lectures, labs, and lab reports), we con-

ducted a paired t-test with unequal variances to compare the mean quiz score from the pre-test 

to after the lab report. We again computed the effect size, d, of the difference between the two 

means. From Table 1, the pertinent data used in this analysis was student section 4’s scores for 

Lab 1, student section 3’s scores for Lab 2, and so on. The results, also discussed in more detail in 

Section 5.6, are shown in Figure 11.

Discussion of Educational Benefit from All Learning Opportunities

After finishing a lab exercise, we ask students to complete a lab report where they answer questions 

about the lab exercises and analyze and interpret the data they collected in lab. The purpose of 

these lab reports is to teach students how to be reflective learners, give them another opportunity 

to connect theoretical concepts to their lab activities, and to enhance their ability to write technical 

reports. To assess the value of the lectures, lab, and lab report together, we compared pre-test 

scores with quiz scores taken after completing the lab report and computed corresponding effect 

sizes. From Figure 11, we again see that students scored significantly higher on quizzes for all of 
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the labs in at least one of the three years of data collected, except for content associated with Lab 

1. Large effect sizes (d > 0.8) are also observed in at least one of the three years of data collected 

in all of the labs except for the content associated with Lab 1. Our study architecture limits us from 

being able to decouple the enhancements attributed to the lab report individually, however, we note 

that the sustainability of significant learning enhancements associated with content of Labs 2-5 is a 

positive outcome, and the fact that Lab 1 still does not result in significant learning enhancements 

reiterates the need for improvements in the learning opportunities provided with the Lab 1 content.

Effects of Teaching Assistants

Though care was taken to make the classroom and lab environments as controlled as possible, some 

of the data collected exhibits large variances from year to year, particularly the data from the after 

Figure 11. The means of the appropriate student section’s quiz score on the pre-test 

compared with the quiz score taken after completing the lab report for year 1 (Y1), year 2 

(Y2), year 3 (Y3). Significant differences in quiz scores from the paired t-test are denoted 

with a ** at a = 0.05. The effect size, d, between the two means is shown above the bars, and 

the difference between means is represented by the black diamond data points.
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lab timepoint, shown in Figure 10. These variances may be due to several external factors and/or 

the contributions of each summed together. These factors could include the dynamics of student 

teams, the lab environment, the individual students and their interest and motivation in any given 

lab exercise or course content, the TA, and many others. As with any classroom hands-on activity, 

the authors did the best they could to minimize the effects of external variables, but the classroom 

is a dynamic environment. The one factor the authors could control was the presence of a different 

lab TA from year to year. While it is certainly possible that the TA may have contributed to the 

variances observed, we note that the TA did not vary within sections in any given year, but only 

between years. A regression analysis was done to ensure that the difference in TAs from year to 

year was not a confounder in our above data analysis.

To do this, we created univariate regression models exploring the relationship between quiz 

score and lab exposure (model 1) and quiz score and TA exposure (model 2). We then created a 

multivariate model exploring the relationship between quiz score and both lab exposure and TA 

exposure as factors (model 3). We did this for two cases: (1) comparing the after in-class lecture/

very beginning of lab timepoint with the after lab timepoint and (2) comparing the after pre-lab 

lecture timepoint with the after lab timepoint. We chose to compare these two cases, as they 

both encompass when the students would have interacted with the TA in the lab activities. From 

this analysis, we observe that the coefficient estimates for the factors in both the univariate and 

multivariate regression models (model 1 vs. model 3 and model 2 vs. model 3) are nearly the same 

and within the confidence intervals. This was true for both of the cases explored. Additionally, 

we note that p-values for all factors are nearly the same in both the univariate and multivariate 

models for each case. For these reasons, we conclude that there is very little confounding oc-

curring for lab exposure and TA exposure in our data, and that perhaps, the variances can be 

attributed to external factors beyond the control of the study design. This variance, however, 

isn’t necessarily a negative outcome of the study, as the purpose of our analyses was to shed 

light on student learning throughout the semester and sequence of learning opportunities, and 

it may be representative of the variability that will exist in the implementation of such hands-on 

activities at other institutions.

Summary of Results

We now summarize our findings and the key take-aways from the formal assessment.

•	 Overall, we found that the series of lectures and haptic paddle labs (including the pre-lab 

introduction, the lab activity, and the lab report) were successful in increasing student under-

standing of the core concepts, as students scored significantly higher on quizzes in 4 of the 

5 labs after completing all parts of the lab experience in one of the three years of data collected 
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and in 3 of the 5 labs in the other two years. A similar trend was observed when looking at 

effect sizes of the differences in quiz scores after completing the lab activity. Beginning to 

end of semester comparisons also support this observation, resulting in significance on the 

cumulative post-test compared with the pre-test in both years.

•	 We found that the in-class lecture alone, though beneficial, is not sufficient for enhancing 

student understanding of the material, as reflected by students only scoring significantly 

higher on quizzes relating to 2 of the 5 labs, (Labs 3 and 4). Large effect sizes for the in-

class lecture comparison were also only observed for Labs 3 and 4.

•	 While our current study setup cannot tease out the effects of the contributions from the haptic 

device itself or the individual lab activities, our results emphasize the importance of well-

designed active, hands-on learning activities. An interesting future study would be to make 

a comparison between this set of lab activities with similar well-designed, non-haptic lab 

activities to shed light on the values of the haptic component explicitly.

CONCLUSION

In this paper, we have introduced a new, robust, inexpensive design of the haptic paddle, a force 

feedback device which has been adopted by several universities in teaching System Dynamics. 

Our haptic paddle relies on a friction drive, which we have experimentally shown is comparable in 

performance to the original, widely accepted, capstan drive, but is much more robust to classroom 

use. Further, by using the low-cost Arduino microcontroller for communication, our complete 

haptic paddle kit can be constructed for less than $100 including all electronics except a computer, 

and can be operated from a laptop, making it more portable than prior haptic paddle systems. We 

also transitioned the software from its original C-executable files over to Matlab and Simulink, 

software that enables students to take on a much more independent role in programming their 

haptic paddle and provides a convenient, engaging user interface.

We have also formally assessed the benefits of the haptic paddle laboratories combined with a 

traditional lecture-style course, probing both what material students are learning and when they are 

learning it. Our formal assessments, using 3 years of student data, suggests that the haptic paddle 

laboratories, including the pre-lab lecture, the lab activity, and the lab report are successful in en-

hancing student understanding of core concepts in this course. The results of our study demonstrate 

that well-designed, supplementary hands-on activities like the haptic paddle laboratories enhance 

the in-class lecture and significantly increase student performance on conceptual quizzes. These 

results, combined with prior assessments of the haptic paddles (Okamura, Richard, and Cutkosky 
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2002; Bowen and O’Malley 2006b), suggest that this set of laboratories engages students, provides 

an inexpensive, versatile platform for educators to use, and results in significantly higher scores on 

multiple-choice conceptual quizzes in System Dynamics.

In order to encourage the adoption of the haptic paddle by other educators and interested 

university or K-12 students, we have developed a comprehensive website containing all of the infor-

mation one needs to build the haptic paddle and conduct the lab exercises (VU Webpage 2012). 

This website contains all of the part files required to manufacture the paddle, a complete bill of 

materials and assembly guide for constructing the paddle, all of the lab handouts and lab report 

questions, all of the Arduino and Simulink files needed to complete the lab exercises, and all of our 

assessments. In addition, with support from The MathWorks, Inc., we have made an introductory 

video to the haptic paddle labs, which provides a discussion of the hardware and software of the 

paddle, examples of using Real Time Workshop in Simulink in combination with external hardware, 

an overview of the lab exercises, and our “lessons learned” on using the haptic paddle laboratories. 

We are also working with collaborators at California State University Long Beach to implement 

the haptic paddle in a freshman introduction to engineering course and in a graduate level course 

on teleoperation. The material developed for these courses will be made freely available on our 

website in the near future.

Our analyses also enable us to pinpoint areas for future improvement for the course and the 

haptic paddle lab exercises. In subsequent years, our primary focus will be on revising content 

associated with Lab 1, which was the lab that consistently appeared to be the most difficult for 

students in the analyses discussed in this paper. One possible thought in addressing this issue is to 

split Lab 1 up into two labs. The first “lab” session would simply be an introduction to the lab and 

the equipment, and the second lab session would be the actual first lab, with modifications from 

previous years. The motivation behind this is to allow students more time to get acquainted with 

the hardware and software of the haptic paddle before performing any in-depth analysis. Another 

area of future work is to take advantage of the flexibility and functionality of Simulink to provide 

simulations of additional dynamic systems beyond the mass-spring-damper system already used 

in the labs. We also plan to explore how the haptic paddle can be used in teaching other subjects 

at both the university and K-12 level, and will work with educators to develop lab modules around 

these ideas. One idea is to incorporate the haptic paddle in a physics lesson and compare its 

effectiveness using the standardized Force Concept Inventory as our assessment. Finally, we intend 

to develop new assessments of the haptic paddle that will enable exploration of the lab activities 

themselves, as well as the “haptic” interaction explicitly. We believe that this type of assessment 

and reflective analysis has the potential to significantly improve the educational experience and 

performance of both teachers and students.
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