
elecanisms_lib.txt                                                            Page 1

UI Module
−−−−−−−−−
The user interface (UI) module provides a software interface to the three 
user light−emitting diodes (LEDs) and the three user tactile switches on 
the board.

The module defines two structures, _LED and _SW, which serve as software 
objects corresponding respectively to the user LEDs and tactile switches.  
It provides three statically defined _LED structures (led1, led2, and led3) 
and three statically defined _SW structures (sw1, sw2, and sw3) that interface 
to the LEDs and tactile switches with corresponding silkscreened labels on 
the board.

The module provides the following functions/methods:

  void init_ui(void)

    Initializes the UI module including the led1, led2, and led3 _LED 
    structures and the sw1, sw2, and sw3 _SW strucutres.  You must call 
    this function one time before calling any of the other functions 
    provided by the UI module.

  void led_on(_LED *self)

    Turns on the user LED corresponding to the one pointed to by self.

  void led_off(_LED *self)

    Turns off the user LED corresponding to the one pointed to by self.

  void led_toggle(_LED *self)

    Toggles the user LED corresponding to the one pointed to by self.

  void led_write(_LED *self, uint16_t val)

    Turns on or off the user LED corresponding to the one pointed to by self
    depending on the value of val.  If val is zero, the LED is turned off.  
    Otherwise, it is turned on.

  uint16_t led_read(_LED *self)

    Returns 1 if the user LED corresponding to the one pointed to by self is 
    on and 0 if it is off.

  uint16_t sw_read(_SW *self)

    Returns 1 if the tactile switch corresponding to the one pointed to by 
    self is not depressed and 0 if it is depressed.  Note that these input 
    signals are active low.

Pin Module
−−−−−−−−−−
The pin module provides a software interface to the input/output (I/O) pins 
on the analog (A0...A5) and digital (D0...D13) headers on the board.

The module defines the _PIN structure, which serves as a software object 
corresponding to an I/O pin.  It provides two statically defined arrays of 
pin objects, A[] (six elements) and D[] (14 elements), which correspond to 
the analog and digital headers, respectively.  Note that all of the I/O pins 
in the analog header can be configured as digital pins.

The module provides the following functions/methods:

  void init_pin(void)

    Initializes the pin module including the A[0]...A[5] and D[0]...D[13] 
    _PIN structures.  Initially, the A[] pins are configured as analog input 
    pins and the D[] pins are configured as digital input pins.  You must 
    call this function one time before calling any of the other functions 
    provided by the pin module.



elecanisms_lib.txt                                                            Page 2

  void pin_digitalIn(_PIN *self)

    Configure the I/O pin corresponding to the one pointed to by self to be a 
    digital input pin.

  void pin_digitalOut(_PIN *self)

    Configure the I/O pin corresponding to the one pointed to by self to be a 
    digital output pin.

  void pin_analogIn(_PIN *self)

    If possible, configure the I/O pin corresponding to the one pointed to by 
    self to be an analog input pin.  If not possible, the function returns 
    without altering the configuration of the given pin.

  void pin_set(_PIN *self)

    If the I/O pin corresponding to the one pointed to by self is a digital 
    output pin, set its value high (i.e., to 1).  Otherwise, do nothing.

  void pin_clear(_PIN *self)

    If the I/O pin corresponding to the one pointed to by self is a digital 
    output pin, set its value low (i.e., to 0).  Otherwise, do nothing.

  void pin_toggle(_PIN *self)

    If the I/O pin corresponding to the one pointed to by self is a digital 
    output pin, toggle its value.  Otherwise, do nothing.

  void pin_write(_PIN *self, uint16_t val)

    If the I/O pin corresponding to the one pointed to by self is a digital 
    output pin, set its value depending on val.  If val is zero, set the pin 
    low, otherwise set it high.

    If the I/O pin corresponding to the one pointed to by self has been 
    configured to produce a pulse−width−modulated (PWM) signal, set its duty 
    cycle to the value of val, interpreted as a 16−bit fixed−point fraction 
    (i.e., the most−significant bit is the 1/2 digit, the second 
    most−significant bit is the 1/4 digit, etc.).

    If the I/O pin corresponding to the one pointed to by self has been 
    configured to produce a servo control signal, set the pulse width 
    depending on the value of val, interpreted as a 16−bit fixed−point 
    fraction (0 corresponds to the minimum pulse width and 1 corresponds 
    to the maximum pulse width).

  uint16_t pin_read(_PIN *self)

    If the I/O pin corresponding to the one pointed to by self is a digital 
    I/O pin, return its value (i.e., 0 or 1).

    If the I/O pin corresponding to the one pointed to by self is an analog 
    input pin, perform an analog−to−digital conversion and return the value 
    as a 16−bit fixed−point fraction (i.e. the 10−bit result from the ADC is 
    left justified within the 16−bit value returned).

    If the I/O pin corresponding to the one pointed to by self has been 
    configured to produce a pulse−width−modulated (PWM) signal, return the 
    current duty cycle as a 16−bit fixed−point fraction.

    If the I/O pin corresponding to the one pointed to by self has been 
    configured to produce a servo control signal, return the current pulse 
    width as a 16−bit fixed−point fraction (0 corresponds to the minimum 
    pulse width and 1 corresponds to the maximum pulse width).

Timer Module
−−−−−−−−−−−−
The timer module provides a software interface to the PIC's five 16−bit timer 
peripherals, which can be used to measure accurately time intervals, to serve 
as a timing reference for other peripherals (e.g., an output compare 



elecanisms_lib.txt                                                            Page 3

peripheral), or to schedule a callback function to be executed at a regular 
interval.

The module defines the _TIMER structure, which serves as a software object 
corresponding to a hardware timer peripheral.  It also provides five statically 
defined timer objects (timer1, timer2, timer3, timer4, and timer5), which 
correspond to the PIC's five 16−bit hardware timer peripherals.

The module provides the following functions/methods:

  void init_timer(void)

    Initializes the timer module including the timer1, timer2, timer3, timer4, 
    and timer5 _TIMER structures.  You must call this function one time before 
    calling any of the other functions provided by the timer module.

  void timer_setPeriod(_TIMER *self, float period)

    Stops the timer corresponding to the one pointed to by self and sets its
    period to the value specified.  Here, the value of period is given in 
    seconds.  If the period specified is too large (i.e., greater than 
    2^24*TCY), does nothing.

  float timer_period(_TIMER *self)

    Returns the period (in seconds) of the timer corresponding to the one 
    pointed to by self.

  void timer_setFreq(_TIMER *self, float freq)

    Stops the timer corresponding to the one pointed to by self and sets its 
    frequency to the value specified by freq.  Here, the value of freq is given 
    in Hertz.  If specified frequency is too low (i.e., less than FCY/2^24), 
    does nothing.

  float timer_freq(_TIMER *self)

    Returns the frequency (in Hertz) of the timer corresponding to the one 
    pointed to by self.

  void timer_start(_TIMER *self)

    Starts the timer corresponding to the one pointed to by self.

  void timer_stop(_TIMER *self)

    Stops the timer corresponding to the one pointed to by self.

  float timer_time(_TIMER *self)

    Returns the current value (in seconds) of the timer corresponding to the 
    one pointed to by self.

  uint16_t timer_read(_TIMER *self)

    Returns the current value (in timer ticks) of the the timer corresponding 
    to the one pointed to by self.

  uint16_t timer_flag(_TIMER *self)

    Returns the value of the interrupt flag of the timer corresponding to the 
    one pointed to by self.  The interrupt flag indicates if the timer has 
    expired (e.g., the interval being timed has elapsed).

  void timer_lower(_TIMER *self)

    Lowers the interrupt flag of the timer corresponding to the one pointed to 
    by self.  Note that the interrupt flag must be lowered in software before 
    the next interval elapses if the that interval is not to be missed.

  void timer_enableInterrupt(_TIMER *self)

    Enables the interrupt of the timer corresponding to the one pointed to by 



elecanisms_lib.txt                                                            Page 4

    self.

  void timer_disableInterrupt(_TIMER *self)

    Disables the interrupt of the timer corresponding to the one pointed to 
    by self.

  void timer_every(_TIMER *self, float interval, 
                   void (*callback)(_TIMER *self))

    Uses the interrupt facility of the timer corresponding to the one pointed 
    to by self to trigger the execution of the provided callback function 
    periodically at the interval specified (in seconds) until canceled by a 
    call to timer_cancel().  

    The callback function must take a single argument, which is a pointer to 
    a _TIMER object and must not return anything.  It should execute in a 
    relatively short amount of time (e.g., it should certainly take less time 
    to execute than the interval specified).

  void timer_after(_TIMER *self, float delay, uint16_t num_times, 
                   void (*callback)(_TIMER *self))

    Uses the interrupt facility of the timer corresponding to the one pointed 
    to by self to trigger the execution of the provided callback function the 
    number of times specified by num_times at the interval specified by delay 
    (in seconds).

    The callback function must take a single argument, which is a pointer to 
    a _TIMER object and must not return anything.  It should execute in a 
    relatively short amount of time (e.g., it should certainly take less time 
    to execute than the interval specified).

  void timer_cancel(_TIMER *self)

    Cancels the execution of a callback function associated with the interrupt 
    facility of the timer module corresponding to the one pointed to by self. 
    Stops the timer and disables its interrupt.

OC Module
−−−−−−−−−
The output compare (OC) module provides a software interface to the PIC's nine 
output compare peripherals, which are capapble of producing a wide variety 
of digital output waveforms that encode infomation in various ways in time 
(e.g., pulse−width−modulated (PWM) signals and hobby servo control signals).  
Each of the OC peripherals has its own internal 16−bit hardware timer or it 
can make use of one of the five timer modules, which have a wider dynamic 
range through a prescalar mechanism.  The OC module makes use of the pin and 
timer modules; consequently, you must include their header files and call their 
initialization functions if you want to use the OC module.

The OC module defines the _OC structure, which serves as a software object 
corresponding to a hardware OC peripheral.  The module also statically defines 
nine OC objects (oc1, oc2, ... oc9), which each correspond to and control one 
of the PIC's nine OC peripherals.

The module provides the following functions/methods:

  void init_oc(void)

    Initializes the OC module including the oc1, oc2, ..., oc9 _OC structures. 
    You must call this function one time before calling any of the other 
    functions provided by the OC module.

  void oc_pwm(_OC *self, _PIN *out, _TIMER *timer, float freq, uint16_t duty)

    Configures the OC peripheral corresponding to the one pointed to by self 
    to produce a PWM signal on the pin corresponding to the one pointed to by 
    out with the frequency (in Hertz) specified by freq and the initital duty 
    cycle specified (as a 16−bit fixed point fraction) by duty.  If a pointer 
    to a timer object is specified that timer is used as a timebase for the 
    OC module.  To use the OC peripheral's internal timer, specify NULL for 
    the timer parameter.  The pin_write() and pin_read() functions of the pin 



elecanisms_lib.txt                                                            Page 5

    module are used respectively to set and to get the duty cycle thereafter.

    If the specified pin is not a remappable pin or if the pin is in use by 
    another module, nothing happens.

  void oc_servo(_OC *self, _PIN *out, _TIMER *timer, float interval, 
                float min_width, float max_width, uint16_t pos)

    Configures the OC peripheral corresponding to the one pointed to by self 
    to produce a hobby servo control signal on the pin corresponding to the 
    one pointed to by out.  The timer corresponding to the one pointed to by
    timer is used to time the period of the control signal, which is specified 
    (in seconds) by interval (a typical value is 20e−3).  The minimum pulse 
    width (in seconds) is specified by min_width (a typical value is 1e−3) and 
    the maximum pulse width (in seconds) is specified by max_wdith (a typical 
    value is 2e−3).  The initial position is specified (as a 16−bit fixed−point 
    fraction with 0 corresponding to min_width and 1 corresponding to 
    max_width) by pos.  The pin_write() and pin_read() functions of the pin 
    module are used respectively to set and to get the pulse width thereafter.

    If the specified pin is not a remappable pin or if the pin is in use by 
    another module, nothing happens.

  void oc_free(_OC *self)

    Disables the OC peripheral corresponding to the one pointed to by self and 
    reconfigures the pin that it had been using to be a digital output (set to 
    a low value).

UART Module
−−−−−−−−−−−
The universal asynchronous receiver/transmitter (UART) module provides a 
software interface to the PIC's four hardware UART peripherals operating with 
8−bit data transmission.  The UART peripherals can be used to communicate with 
a host PC via a virtual COM (i.e. serial) port or with another embedded 
processer that also has a UART peripheral.  

The module defines the _UART structure, which serves as a software object 
corresponding to a hardware UART peripheral.  The module also provides four 
statically defined UART objects (uart1, uart2, uart3, and uart4), which each 
correspond to and control one of the PIC's four UART peripherals.  

The UART module arranges things so that output written to stdout and stderr 
via functions in the stdio standard library (e.g., printf()) are sent to a 
UART peripheral (i.e. uart1 operating at 19,200 baud with no parity and one 
stopbit) and can be displayed on a serial terminal application running on a 
host PC connected to the board via the supplied USB−UART cable plugged into 
the audio jack on the board.  It is also easy to redirect stdout or stderr 
to another UART module by simply making either the supplied _stdout or _stderr 
variable point to another of the UART objects.

The module provides the following funcitons/methods:

  void init_uart(void)

    Initializes the UART module including the uart1, uart2, uart3, and uart4 
    _UART structures.  Calls init_pin() to initialize the pin module.  Defines 
    pin objects corresponding to those connected to the tip and sleve of the 
    audio jack.  Opens uart1 to operate at 19,200 baud with no party and one 
    stop bit using the pins connected to the audio jack.  Points _stdout and 
    _stderr at uart1.  You must call this function one time before calling any 
    of the other functions provided by the UART module.

  void uart_open(_UART *self, _PIN *TX, _PIN *RX, _PIN *RTS, _PIN *CTS, 
                 float baudrate, int8_t parity, int16_t stopbits, 
                 uint16_t TXthreshold, uint8_t *TXbuffer, uint16_t TXbufferlen, 
                 uint8_t *RXbuffer, uint16_t RXbufferlen)

    Configures the UART corresponding to the one pointed to by self to make 
    use of the transmit and receive pins specified by TX and RX at the baud 
    rate specified by baudrate with the specified parity (use 'N' for none, 'E'
    for even, or 'O' for odd) and number of stop bits (1 or 2).  Enables data 



elecanisms_lib.txt                                                            Page 6

    transmission.

    If RTS and CTS pins are provided, the UART is configured to use hardware 
    flow control using the specified request−to−send (RTS) and clear−to−send 
    (CTS) pins specified.  If no hardware flow control is desired, you should 
    pass NULL for RTS and CTS. 

    If any of the specified pins is not a remappable pin or if any of them is 
    in use by another module, nothing happens.

    If TXbuffer is provided, software transmit buffering is enabled using the 
    buffer specified and the UART peripheral's transmit interrupt facility.  
    Transmission is initiated if at least TXthreshold bytes are in the buffer. 
    If no software transmit buffering is desired, you should pass NULL for 
    TXbuffer and 0 for TXbufferlen and TXthreshold.

    If RXbuffer is provided, software receive buffering is enabled using the 
    buffer specified and the UART peripheral's receive interrupt facility.  
    If no software receive buffering is desired, you should pass NULL for 
    RXbuffer and 0 for RXbufferlen.

  void uart_close(_UART *self)

    Disables the UART corresponding to the one pointed to by self and 
    reconfigures the pins that were being used as digital I/Os (RX/CTS are
    made digital inputs and TX/CTS are made digital outputs set high).

  void uart_putc(_UART *self, uint8_t ch)

    Send the character specified by ch via the UART corresponding to the one 
    pointed to by self.  Note that this function does not return (i.e. it 
    blocks execution) until the character is transmitted.

  uint8_t uart_getc(_UART *self)

    Receive a character from the UART corresponding to the one pointed to by 
    self and return its value.  Note that this function does not return until 
    a character is received (i.e., it blocks execution).

  void uart_flushTxBuffer(_UART *self)

    Flush the transmit buffer of the UART corresponding to the one pointed to 
    by self.  If software buffering is not enabled, nothing happens.

  void uart_puts(_UART *self, uint8_t *str)

    Transmit all of the characters in the null−terminated string pointed to 
    by str via the UART corresponding to the one pointed to by self.

  void uart_gets(_UART *self, uint8_t *str, uint16_t len)

    Receive a string into the buffer pointed to by str of no more than len−1 
    characters via the UART corresponding to the one pointed to by self, 
    terminate it with a null character, and return.  Received characters are 
    echoed via uart_putc().  Simple editing via the backspace/delete keys are 
    supported.  The escape key clears the buffer and the return/enter key 
    signals the end of the string.


